摘要:
A heat exchanger including a plurality of first refrigerant tubes, and a plurality of second refrigerant tubes separated from the plurality of first refrigerant tubes in an air flow direction. Further, a diameter of a respective refrigerant tube of the plurality of first refrigerant tubes is smaller than a diameter of a respective refrigerant tube of the plurality of second refrigerant tubes.
摘要:
A heat exchanger is provided. The heat exchanger includes a plurality of aluminum tubes formed of aluminum, each of the aluminum tubes including a plurality of grooves that are formed on an inner circumferential surface of each of the aluminum tubes and that extend along a longitudinal direction of the aluminum tubes; and a plurality of heat transfer fins coupled to the aluminum tubes. The heat exchanger may contribute to the reduction of the manufacturing cost, may provide high heat transfer performance and may prevent a coolant leak.
摘要:
A method for fabricating a thin layer in a semiconductor device is provided. The method can include: forming a preliminary layer, in which Ta and F are mixed, on a semiconductor substate by performing an Atomic Layer Deposition (ALD) method; forming a Ta layer by reacting the preliminary layer with B2H6; and forming a TaN layer by performing heat treatment for the Ta layer in N2 atmosphere.
摘要翻译:提供了一种在半导体器件中制造薄层的方法。 该方法可以包括:通过执行原子层沉积(ALD)方法在半导体子状态上形成混合有Ta和F的预备层; 通过使预备层与B 2 H 6 C反应形成Ta层; 并通过在N 2气氛中对Ta层进行热处理而形成TaN层。
摘要:
Provided are an image sensor and a method for manufacturing the same. A trench can be formed through metal interconnection layers of the image sensor in a region corresponding to a light receiving device for each unit pixel. A passivation layer pattern can be provided at sidewalls of the trench to inhibit light incident into the metal interconnection layers and reduce cross-talk and noise. A filler material can be provided to fill the trench. A color filter layer and microlens can be formed on the filler material. The filler material can be, for example, a polymer, an oxide layer, or a photoresist.
摘要:
A semiconductor device and method of manufacturing same, capable of preventing the material of a barrier metal layer from penetrating into an intermetallic insulating layer are provided. In an embodiment, the device can include: a first metal interconnection formed in a lower insulating layer on a semiconductor substrate; an intermetallic insulating layer formed on the lower insulating layer including the first metal interconnection, the intermetallic insulating layer having a via hole and a trench for a second metal interconnection connecting to the first metal interconnection; a carbon implantation layer formed on inner walls of the via hole and the trench of the intermetallic insulating layer; a barrier metal layer deposited on the first metal interconnection exposed through the via hole and on the carbon implantation layer; a via formed in the via hole; and the second metal interconnection formed in the trench.
摘要:
A semiconductor device manufacturing method wherein a metal suicide layer is formed via an in-situ process. The method includes forming a gate electrode on a semiconductor substrate; forming an insulation side wall at either lateral surface of the gate electrode; forming a source/drain region in a surface of the semiconductor substrate at either side of the gate electrode; forming a metal layer on the surface of the semiconductor substrate including the gate electrode; performing a plasma treatment on the metal layer; forming a capping material layer on the metal layer; performing an annealing process upon the semiconductor substrate, to form a metal silicide layer on the surface of the semiconductor substrate at positions corresponding to the gate electrode and the source/drain region; and removing the capping material layer and the metal layer remained without reaction with the gate electrode and the semiconductor substrate.
摘要:
Disclosed are a semiconductor device and a method for fabricating a metal interconnection of a semiconductor device. The method includes the steps of forming a dielectric layer on a semiconductor substrate including a lower interconnection, forming a trench in the interlayer dielectric layer that exposes the lower interconnection, forming a diffusion barrier in the trench and on the interlayer dielectric layer, forming a copper seed layer on the diffusion barrier, implanting a metal dopant into the copper seed layer, forming a copper metal interconnection on the copper seed layer into which the metal dopant is implanted, and forming an alloy layer from the copper seed layer and the metal dopant.
摘要:
A semiconductor device and method of manufacturing same, capable of preventing the material of a barrier metal layer from penetrating into an intermetallic insulating layer are provided. In an embodiment, the device can include: a first metal interconnection formed in a lower insulating layer on a semiconductor substrate; an intermetallic insulating layer formed on the lower insulating layer including the first metal interconnection, the intermetallic insulating layer having a via hole and a trench for a second metal interconnection connecting to the first metal interconnection; a carbon implantation layer formed on inner walls of the via hole and the trench of the intermetallic insulating layer; a barrier metal layer deposited on the first metal interconnection exposed through the via hole and on the carbon implantation layer; a via formed in the via hole; and the second metal interconnection formed in the trench.
摘要:
A semiconductor device and a fabricating method thereof are provided. The semiconductor device includes a gate insulating layer with a high dielectric constant (k) and a polysilicon layer on a gate metal layer. The gate metal layer can include silicon atoms. Electron mobility can be improved, and production residue and damage can be minimized.
摘要:
Provided is a method for manufacturing a metal interconnection in a semiconductor device. The semiconductor device fabricated according to one embodiment comprises a copper interconnection having reduced sheet and contact resistance. In the method for manufacturing the copper interconnection, a dielectric comprising a via hole is formed on a semiconductor substrate. A diffusion barrier is deposited in the via hole of the dielectric using a process including a plasma enhanced atomic layer deposition (PEALD) process. A copper metal layer can be formed on the via hole through an electroplating process.