摘要:
Embodiments disclosed herein relate to carrier allocation and management in multi-carrier communication systems. In some embodiments, the number of carriers assigned to an access terminal on a forward link may be determined by an access network, and the number of carriers assigned to the access terminal on a reverse link may be based on a cooperative process between the access terminal and the access network. In other embodiments, the number of carriers assigned to the access terminal on the reverse link may also be determined by the access network, e.g., in relation to the scheduling information received from the access terminal.
摘要:
Embodiments disclosed herein relate to carrier allocation and management in multi-carrier communication systems. In some embodiments, the number of carriers assigned to an access terminal on a forward link may be determined by an access network, and the number of carriers assigned to the access terminal on a reverse link may be based on a cooperative process between the access terminal and the access network. In other embodiments, the number of carriers assigned to the access terminal on the reverse link may also be determined by the access network, e.g., in relation to the scheduling information received from the access terminal.
摘要:
Techniques are discussed herein identify transmission strategies and to communicate those identified transmission strategies in a transparent communication environment. In some examples, a user equipment (UE) may identify a new transmission strategy for a downlink channel different from a current transmission strategy for the down link channel. The UE may transmit a channel state information (CSI) message that includes an indication of the new transmission strategy identified by the UE. In some examples, a base station may identify the new transmission strategy for the downlink channel. The base station may transmit a codebook subset restriction (CSR) indicator that includes an indication of the new transmission strategy identified by the base station. In some examples, the UE may modify its feedback strategy based on the new transmission strategy.
摘要:
Certain aspects of the present disclosure relate to techniques for power control and user multiplexing for coordinated multi-point (CoMP) transmission and reception in heterogeneous networks (HetNet).
摘要:
Certain aspects of the present disclosure provide techniques for conveying downlink control information (DCI). According to certain aspects, the DCI comprises at least a first field that indicates both a rank indication (RI) and a number of enabled transport blocks (TBs) and at least a second field that indicates either a modulation and coding scheme (MCS) for an enabled TB if the first field indicates more than one TB is enabled or information other than the MCS if the first field indicates a single TB is enabled.
摘要:
A wireless communication network distributes resources for a Physical Downlink Control CHannel (PDCCH) over multiple carriers in accordance with a constraint that limits a number of blind decoding actions required by user equipment (UE). Distribution can entail segregating UE-specific and common search spaces to different monitored carriers. Distribution can entail segregating aggregation levels to different monitored carriers. Distribution can entail segregating a number of decoding candidates for a given aggregation level to different monitored carriers. The distribution can be orthogonal or non-orthogonal, and can be UE-based or per cell-based. The distribution can be static, semi-static or hop with time.
摘要:
Techniques for sending ACK/NACK information in a multi-carrier wireless communication network are disclosed. In one aspect, a plurality of ACK/NACK transmission techniques are selectively employed by a multi-carrier user equipment (UE) to reduce the number of bits of ACK/NACK information to send and/or increase the number of payload bits available for sending the ACK/NACK information. The ACK/NACK transmission techniques may include an orthogonal sequence reduction technique, a channel selection technique, a spatial bundling technique, a carrier bundling technique, and/or a subframe bundling technique. The ACK/NACK transmission techniques may be prioritized based on the number of carriers on which data transmissions are received, a payload size available for carrying ACK/NACK information, and/or other factors. The multi-carrier UE can utilize different ACK/NACK transmission techniques in connection with different subsets of its configured carriers.
摘要:
The described aspects include methods and apparatus for communicating control information in a carrier aggregation configuration that uses multiple radio access technologies (RAT). A first resource assignment related to a first carrier corresponding to a first RAT can be received, as well as, a second resource assignment related to a second carrier corresponding to a second RAT. The first carrier and the second carrier are aggregated for communicating data in a wireless network. In addition, resources can be determined for communicating first RAT control data for the first RAT over an uplink carrier based at least in part on the first resource assignment. Second RAT control data can then also be communicated in containers and/or using timing for control data of the first RAT over at least a portion of the resources.
摘要:
A method, an apparatus, and a computer program product for wireless communication are provided for separating control transmissions and data transmissions within the coverage area of a plurality of transmission/reception points or points that are geographically displaced, the plurality of points comprising a macro node and a plurality of remote radio heads (RRHs) coupled to the macro node. Separating control transmissions and data transmissions in the macro node/RRH configuration may allow UEs to be associated with one set of transmission points for data transmissions and the same set or a different set of transmission points for common control signaling. Separating control transmissions and data transmissions may also allow for faster reconfiguration of antenna ports used for UE data transmission compared with reconfiguration via a handover process.
摘要:
Techniques for reporting channel state information (CSI) in a multi-carrier wireless communication system are disclosed. In some examples, a user equipment determines a configuration for reporting CSI for each component carrier (CC) in a plurality of component carriers. For a first subframe, the user equipment determines a priority for transmitting CSI associated with the plurality of CCs based at least in part on the configuration. The user equipment sends, in the first subframe, a CSI report including the prioritized CSI. The CSI report can include CSI for a single CC, or CSI for multiple CCs. For multi-CC reporting of CSI, the user equipment can multiplex CSI reports or CSI elements for the plurality of CCs up to an available payload size.