Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
A curable silicone composition is provided that comprises a reaction product of a reaction of (I) a clustered functional polyorganopolysiloxane having at least one radical curable group selected from an acrylate group and a methacrylate group; (II) a silicone reactive diluent, and a (III) a radical initiator.
Abstract:
A method for forming a thermally conductive thermal radical cure silicone composition comprising (I) a clustered functional polyorganopolysiloxane; optionally (II) a silicone reactive diluent, (III) a filler comprising a thermally conductive filler, (III′) a filler treating agent, and (IV) a radical initiator is provided. In this method, the clustered functional polyorganosiloxane (I) and the optional silicone reactive diluent (II) are premade prior to their addition to respective components (III), (III′) and (IV).
Abstract:
An alkoxy-functional organopolysiloxane resin and polymer is disclosed that comprises the reaction product of a reaction of (i) an alkenyl-functional siloxane resin comprising R3SiO1/2 units and SiO4/2 units; (ii) an alkoxysilane-functional organosiloxane compound having at least one silicon-bonded hydrogen atom at a molecular terminal; (iii) an endcapper according to the formula to the formula R23Si—(R22SiO)s—SiR22H or R23Si—(R22SiO)t—(HR2SiO)—SiR23, or combinations thereof; and (iv) a polyorganosiloxane having an average, per molecule, of at least 2 aliphatically unsaturated organic groups in the presence of a (v) hydrosilylation catalyst. In this alkoxy-functional organopolysiloxane resin and polymer, each R2 is independently a hydrocarbon radical and the subscripts s and t independently have values ranging from 0 to 10.
Abstract:
A silicone composition contains I) a shrink additive and II) a curable polyorganosiloxane composition. A method for fabricating an electronic device includes the steps of: 1) interposing the silicone composition between an IHS and a substrate, 2) curing the curable polyorganosiloxane composition to form a cured silicone product, and 3) removing the shrink additive during and/or after step 2), thereby compressing the IHS to the substrate. Compressing occurs as thickness of the cured silicone product decreases, as compared to thickness of the silicone composition interposed in step 1).
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
A composition is capable of curing via condensation reaction. The composition uses a new condensation reaction catalyst. The new condensation reaction catalyst is used to replace conventional tin catalysts. The composition can react to form a gum, gel, rubber, or resin.
Abstract:
An in situ method for forming a thermally conductive thermal radical cure silicone composition is provided. The in situ method comprises forming a thermally conductive clustered functional polymer comprising the reaction product of a reaction of a polyorganosiloxane having an average, per molecule, of at least 2 aliphatically unsaturated organic groups; a polyorganohydrogensiloxane having an average of 4 to 15 silicon atoms per molecule; and a reactive species having, per molecule, at least 1 aliphatically unsaturated organic group and 1 or more curable groups; in the presence of a filler treating agent, a filler comprising a thermally conductive filler, an isomer reducing agent, and a hydrosilylation catalyst. The method further comprises blending the thermally conductive clustered functional polymer with a radical initiator.