摘要:
A complementary metal oxide semiconductor (CMOS) device including a substrate including a first active region and a second active region, wherein each of the first active region and second active region of the substrate are separated by from one another by an isolation region. A n-type semiconductor device is present on the first active region of the substrate, in which the n-type semiconductor device includes a first portion of a gate structure. A p-type semiconductor device is present on the second active region of the substrate, in which the p-type semiconductor device includes a second portion of the gate structure. A connecting gate portion provides electrical connectivity between the first portion of the gate structure and the second portion of the gate structure. Electrical contact to the connecting gate portion is over the isolation region, and is not over the first active region and/or the second active region.
摘要:
A delta doping of silicon by carbon is provided on silicon surfaces by depositing a silicon carbon alloy layer on silicon surfaces, which can be horizontal surfaces of a bulk silicon substrate, horizontal surfaces of a top silicon layer of a semiconductor-on-insulator substrate, or vertical surfaces of silicon fins. A p-type field effect transistor (PFET) region and an n-type field effect transistor (NFET) region can be differentiated by selectively depositing a silicon germanium alloy layer in the PFET region, and not in the NFET region. The silicon germanium alloy layer in the PFET region can overlie or underlie a silicon carbon alloy layer. A common material stack can be employed for gate dielectrics and gate electrodes for a PFET and an NFET. Each channel of the PFET and the NFET includes a silicon carbon alloy layer, and is differentiated by the presence or absence of a silicon germanium layer.
摘要:
A method and semiconductor structure that overcome the dual stress liner boundary problem, without significantly increasing the overall size of the integrated circuit, are provided. In accordance with the present invention, the dual stress liner boundary or gap therebetween is forced to land on a neighboring dummy gate region. By forcing the dual stress liner boundary or gap between the liners to land on the dummy gate region, the large stresses associated with the dual stress liner boundary or gap are transferred to the dummy gate region, not the semiconductor substrate. Thus, the impact of the dual stress liner boundary on the nearest neighboring FET is reduced. Additionally, benefits of device variability and packing density are achieved utilizing the present invention.
摘要:
A delta doping of silicon by carbon is provided on silicon surfaces by depositing a silicon carbon alloy layer on silicon surfaces, which can be horizontal surfaces of a bulk silicon substrate, horizontal surfaces of a top silicon layer of a semiconductor-on-insulator substrate, or vertical surfaces of silicon fins. A p-type field effect transistor (PFET) region and an n-type field effect transistor (NFET) region can be differentiated by selectively depositing a silicon germanium alloy layer in the PFET region, and not in the NFET region. The silicon germanium alloy layer in the PFET region can overlie or underlie a silicon carbon alloy layer. A common material stack can be employed for gate dielectrics and gate electrodes for a PFET and an NFET. Each channel of the PFET and the NFET includes a silicon carbon alloy layer, and is differentiated by the presence or absence of a silicon germanium layer.
摘要:
A method for making a semiconductor structure that overcome the dual stress liner boundary problem, without significantly increasing the overall size of the integrated circuit, is provided. In accordance with embodiments of the present invention, the dual stress liner boundary or gap therebetween is forced to land on a neighboring dummy gate region. By forcing the dual stress liner boundary or gap between the liners to land on the dummy gate region, the large stresses associated with the dual stress liner boundary or gap are transferred to the dummy gate region, not the semiconductor substrate. Thus, the impact of the dual stress liner boundary on the nearest neighboring FET is reduced. Additionally, benefits of device variability and packing density are achieved utilizing the present invention.
摘要:
A complementary metal oxide semiconductor (CMOS) device including a substrate including a first active region and a second active region, wherein each of the first active region and second active region of the substrate are separated by from one another by an isolation region. A n-type semiconductor device is present on the first active region of the substrate, in which the n-type semiconductor device includes a first portion of a gate structure. A p-type semiconductor device is present on the second active region of the substrate, in which the p-type semiconductor device includes a second portion of the gate structure. A connecting gate portion provides electrical connectivity between the first portion of the gate structure and the second portion of the gate structure. Electrical contact to the connecting gate portion is over the isolation region, and is not over the first active region and/or the second active region.
摘要:
A complementary metal oxide semiconductor (CMOS) device that may include a substrate having a first active region and a second active region that are separated from one another by an isolation region. An n-type semiconductor device is present on the first active region that includes a first gate structure having a first gate dielectric layer and an n-type work function metal layer, wherein the n-type work function layer does not extend onto the isolation region. A p-type semiconductor device is present on the second active region that includes a second gate structure having a second gate dielectric layer and a p-type work function metal layer, wherein the p-type work function layer does not extend onto the isolation region. A connecting gate structure extends across the isolation region into direct contact with the first gate structure and the second gate structure.
摘要:
A stack pad layers including a first pad oxide layer, a pad nitride layer, and a second pad oxide layer are formed on a semiconductor-on-insulator (SOI) substrate. A deep trench extending below a top surface or a bottom surface of a buried insulator layer of the SOI substrate and enclosing at least one top semiconductor region is formed by lithographic methods and etching. A stress-generating insulator material is deposited in the deep trench and recessed below a top surface of the SOI substrate to form a stress-generating buried insulator plug in the deep trench. A silicon oxide material is deposited in the deep trench, planarized, and recessed. The stack of pad layer is removed to expose substantially coplanar top surfaces of the top semiconductor layer and of silicon oxide plugs. The stress-generating buried insulator plug encloses, and generates a stress to, the at least one top semiconductor region.
摘要:
A chip is provided which includes an active semiconductor region and a field effect transistor (“FET”) having a channel region, a source region and a drain region all disposed within the active semiconductor region. The FET has a longitudinal direction in a direction of a length of the channel region, and a transverse direction in a direction of a width of the channel region. A buried dielectric stressor element has a horizontally extending upper surface at a first depth below a major surface of a portion of the active semiconductor region, such as an east portion of the active semiconductor region. A surface dielectric stressor element is disposed laterally adjacent to the active semiconductor region at the major surface of the active semiconductor region. The surface dielectric stressor element extends from the major surface to a second depth not substantially greater than the first depth. The stresses applied by the buried and surface dielectric stressor elements cooperate together to apply a shear stress to the channel region of the FET.
摘要:
The present invention provides a technique for forming a CMOS structure including at least one pFET that has a stressed channel which avoids the problems mentioned in the prior art. Specifically, the present invention provides a method for avoiding formation of deep canyons at the interface between the active area and the trench isolation region, without requiring a trench isolation pulldown, thereby eliminating the problems of silicide to source/drain shorts and contact issues. At the same time, the method of the present invention provides a structure that allows for a facet to form at the spacer edge, retaining the Miller capacitance benefit that such a structure provides. The inventive structure also results in higher uniaxial stress in the MOSFET channel compared to one which allows for a facet to grow at the trench isolation edge.