Complementary metal oxide semiconductor (CMOS) device having gate structures connected by a metal gate conductor
    1.
    发明授权
    Complementary metal oxide semiconductor (CMOS) device having gate structures connected by a metal gate conductor 有权
    具有通过金属栅极导体连接的栅极结构的互补金属氧化物半导体(CMOS)器件

    公开(公告)号:US08803243B2

    公开(公告)日:2014-08-12

    申请号:US13342435

    申请日:2012-01-03

    IPC分类号: H01L21/70

    摘要: A complementary metal oxide semiconductor (CMOS) device including a substrate including a first active region and a second active region, wherein each of the first active region and second active region of the substrate are separated by from one another by an isolation region. A n-type semiconductor device is present on the first active region of the substrate, in which the n-type semiconductor device includes a first portion of a gate structure. A p-type semiconductor device is present on the second active region of the substrate, in which the p-type semiconductor device includes a second portion of the gate structure. A connecting gate portion provides electrical connectivity between the first portion of the gate structure and the second portion of the gate structure. Electrical contact to the connecting gate portion is over the isolation region, and is not over the first active region and/or the second active region.

    摘要翻译: 一种互补金属氧化物半导体(CMOS)器件,包括包括第一有源区和第二有源区的衬底,其中衬底的第一有源区和第二有源区中的每一个被隔离区彼此分开。 n型半导体器件存在于衬底的第一有源区上,其中n型半导体器件包括栅极结构的第一部分。 p型半导体器件存在于衬底的第二有源区上,其中p型半导体器件包括栅极结构的第二部分。 连接栅极部分提供栅极结构的第一部分和栅极结构的第二部分之间的电连接。 与连接栅极部分的电接触超过隔离区域,并且不在第一有源区域和/或第二有源区域之上。

    CMOS having a SiC/SiGe alloy stack
    2.
    发明授权
    CMOS having a SiC/SiGe alloy stack 有权
    具有SiC / SiGe合金叠层的CMOS

    公开(公告)号:US08476706B1

    公开(公告)日:2013-07-02

    申请号:US13343472

    申请日:2012-01-04

    摘要: A delta doping of silicon by carbon is provided on silicon surfaces by depositing a silicon carbon alloy layer on silicon surfaces, which can be horizontal surfaces of a bulk silicon substrate, horizontal surfaces of a top silicon layer of a semiconductor-on-insulator substrate, or vertical surfaces of silicon fins. A p-type field effect transistor (PFET) region and an n-type field effect transistor (NFET) region can be differentiated by selectively depositing a silicon germanium alloy layer in the PFET region, and not in the NFET region. The silicon germanium alloy layer in the PFET region can overlie or underlie a silicon carbon alloy layer. A common material stack can be employed for gate dielectrics and gate electrodes for a PFET and an NFET. Each channel of the PFET and the NFET includes a silicon carbon alloy layer, and is differentiated by the presence or absence of a silicon germanium layer.

    摘要翻译: 通过在硅表面上沉积硅碳合金层,在硅表面上提供硅的δ掺杂,硅表面可以是体硅衬底的水平表面,绝缘体上半导体衬底的顶部硅层的水平表面, 或硅片的垂直表面。 可以通过在PFET区域中而不是在NFET区域中选择性地沉积硅锗合金层来区分p型场效应晶体管(PFET)区域和n型场效应晶体管(NFET)区域。 PFET区域中的硅锗合金层可以覆盖或叠加在硅碳合金层上。 普通材料堆叠可用于PFET和NFET的栅极电介质和栅电极。 PFET和NFET的每个沟道包括硅碳合金层,并且通过硅锗层的存在或不存在来区分。

    METHOD AND STRUCTURE FOR IMPROVING DEVICE PERFORMANCE VARIATION IN DUAL STRESS LINER TECHNOLOGY
    3.
    发明申请
    METHOD AND STRUCTURE FOR IMPROVING DEVICE PERFORMANCE VARIATION IN DUAL STRESS LINER TECHNOLOGY 有权
    改进双应力衬管技术中设备性能变化的方法与结构

    公开(公告)号:US20090079011A1

    公开(公告)日:2009-03-26

    申请号:US12328358

    申请日:2008-12-04

    IPC分类号: H01L27/088 H01L21/311

    摘要: A method and semiconductor structure that overcome the dual stress liner boundary problem, without significantly increasing the overall size of the integrated circuit, are provided. In accordance with the present invention, the dual stress liner boundary or gap therebetween is forced to land on a neighboring dummy gate region. By forcing the dual stress liner boundary or gap between the liners to land on the dummy gate region, the large stresses associated with the dual stress liner boundary or gap are transferred to the dummy gate region, not the semiconductor substrate. Thus, the impact of the dual stress liner boundary on the nearest neighboring FET is reduced. Additionally, benefits of device variability and packing density are achieved utilizing the present invention.

    摘要翻译: 提供了克服双应力衬垫边界问题的方法和半导体结构,而不显着增加集成电路的总体尺寸。 根据本发明,它们之间的双应力衬垫边界或间隙被迫在邻近的虚拟栅极区域上着陆。 通过迫使衬垫之间的双重应力衬垫边界或间隙落在虚拟栅极区上,与双应力衬垫边界或间隙相关联的大应力被传递到虚拟栅极区而不是半导体衬底。 因此,双应力衬垫边界对最近的相邻FET的影响减小。 此外,利用本发明实现了装置可变性和包装密度的益处。

    CMOS HAVING A SIC/SIGE ALLOY STACK
    4.
    发明申请
    CMOS HAVING A SIC/SIGE ALLOY STACK 有权
    CMOS具有SIC / SIGE合金堆栈

    公开(公告)号:US20130168695A1

    公开(公告)日:2013-07-04

    申请号:US13343472

    申请日:2012-01-04

    摘要: A delta doping of silicon by carbon is provided on silicon surfaces by depositing a silicon carbon alloy layer on silicon surfaces, which can be horizontal surfaces of a bulk silicon substrate, horizontal surfaces of a top silicon layer of a semiconductor-on-insulator substrate, or vertical surfaces of silicon fins. A p-type field effect transistor (PFET) region and an n-type field effect transistor (NFET) region can be differentiated by selectively depositing a silicon germanium alloy layer in the PFET region, and not in the NFET region. The silicon germanium alloy layer in the PFET region can overlie or underlie a silicon carbon alloy layer. A common material stack can be employed for gate dielectrics and gate electrodes for a PFET and an NFET. Each channel of the PFET and the NFET includes a silicon carbon alloy layer, and is differentiated by the presence or absence of a silicon germanium layer.

    摘要翻译: 通过在硅表面上沉积硅碳合金层,在硅表面上提供硅的δ掺杂,硅表面可以是体硅衬底的水平表面,绝缘体上半导体衬底的顶部硅层的水平表面, 或硅片的垂直表面。 可以通过在PFET区域中而不是在NFET区域中选择性地沉积硅锗合金层来区分p型场效应晶体管(PFET)区域和n型场效应晶体管(NFET)区域。 PFET区域中的硅锗合金层可以覆盖或叠加在硅碳合金层上。 普通材料堆叠可用于PFET和NFET的栅极电介质和栅电极。 PFET和NFET的每个沟道包括硅碳合金层,并且通过硅锗层的存在或不存在来区分。

    Method and structure for improving device performance variation in dual stress liner technology
    5.
    发明授权
    Method and structure for improving device performance variation in dual stress liner technology 有权
    双应力衬垫技术改进装置性能变化的方法和结构

    公开(公告)号:US07462522B2

    公开(公告)日:2008-12-09

    申请号:US11468402

    申请日:2006-08-30

    IPC分类号: H01L21/338 H01L29/82

    摘要: A method for making a semiconductor structure that overcome the dual stress liner boundary problem, without significantly increasing the overall size of the integrated circuit, is provided. In accordance with embodiments of the present invention, the dual stress liner boundary or gap therebetween is forced to land on a neighboring dummy gate region. By forcing the dual stress liner boundary or gap between the liners to land on the dummy gate region, the large stresses associated with the dual stress liner boundary or gap are transferred to the dummy gate region, not the semiconductor substrate. Thus, the impact of the dual stress liner boundary on the nearest neighboring FET is reduced. Additionally, benefits of device variability and packing density are achieved utilizing the present invention.

    摘要翻译: 提供了一种克服双应力衬垫边界问题的半导体结构的方法,而不显着增加集成电路的总体尺寸。 根据本发明的实施例,它们之间的双应力衬垫边界或间隙被迫在邻近的虚拟栅极区域上着陆。 通过迫使衬垫之间的双重应力衬垫边界或间隙落在虚拟栅极区上,与双应力衬垫边界或间隙相关联的大应力被传递到虚拟栅极区而不是半导体衬底。 因此,双应力衬垫边界对最近的相邻FET的影响减小。 此外,利用本发明实现了装置可变性和包装密度的益处。

    Complementary Metal Oxide Semiconductor (CMOS) Device Having Gate Structures Connected By A Metal Gate Conductor
    6.
    发明申请
    Complementary Metal Oxide Semiconductor (CMOS) Device Having Gate Structures Connected By A Metal Gate Conductor 有权
    互补金属氧化物半导体(CMOS)器件,其栅极结构由金属栅极导体连接

    公开(公告)号:US20130168776A1

    公开(公告)日:2013-07-04

    申请号:US13342435

    申请日:2012-01-03

    IPC分类号: H01L27/092 H01L21/8238

    摘要: A complementary metal oxide semiconductor (CMOS) device including a substrate including a first active region and a second active region, wherein each of the first active region and second active region of the substrate are separated by from one another by an isolation region. A n-type semiconductor device is present on the first active region of the substrate, in which the n-type semiconductor device includes a first portion of a gate structure. A p-type semiconductor device is present on the second active region of the substrate, in which the p-type semiconductor device includes a second portion of the gate structure. A connecting gate portion provides electrical connectivity between the first portion of the gate structure and the second portion of the gate structure. Electrical contact to the connecting gate portion is over the isolation region, and is not over the first active region and/or the second active region.

    摘要翻译: 一种互补金属氧化物半导体(CMOS)器件,包括包括第一有源区和第二有源区的衬底,其中衬底的第一有源区和第二有源区中的每一个被隔离区彼此分开。 n型半导体器件存在于衬底的第一有源区上,其中n型半导体器件包括栅极结构的第一部分。 p型半导体器件存在于衬底的第二有源区上,其中p型半导体器件包括栅极结构的第二部分。 连接栅极部分提供栅极结构的第一部分和栅极结构的第二部分之间的电连接。 与连接栅极部分的电接触超过隔离区域,并且不在第一有源区域和/或第二有源区域之上。

    SELECTIVE PARTIAL GATE STACK FOR IMPROVED DEVICE ISOLATION
    7.
    发明申请
    SELECTIVE PARTIAL GATE STACK FOR IMPROVED DEVICE ISOLATION 失效
    用于改进设备隔离的选择性部分门锁

    公开(公告)号:US20130126976A1

    公开(公告)日:2013-05-23

    申请号:US13298783

    申请日:2011-11-17

    IPC分类号: H01L27/092 H01L21/8238

    摘要: A complementary metal oxide semiconductor (CMOS) device that may include a substrate having a first active region and a second active region that are separated from one another by an isolation region. An n-type semiconductor device is present on the first active region that includes a first gate structure having a first gate dielectric layer and an n-type work function metal layer, wherein the n-type work function layer does not extend onto the isolation region. A p-type semiconductor device is present on the second active region that includes a second gate structure having a second gate dielectric layer and a p-type work function metal layer, wherein the p-type work function layer does not extend onto the isolation region. A connecting gate structure extends across the isolation region into direct contact with the first gate structure and the second gate structure.

    摘要翻译: 互补金属氧化物半导体(CMOS)器件,其可以包括具有通过隔离区彼此分离的第一有源区和第二有源区的衬底。 在第一有源区上存在n型半导体器件,其包括具有第一栅极介电层和n型功函数金属层的第一栅极结构,其中n型功函数层不延伸到隔离区 。 p型半导体器件存在于第二有源区,其包括具有第二栅极介电层和p型功函数金属层的第二栅极结构,其中p型功函数层不延伸到隔离区 。 连接栅极结构跨越隔离区域延伸成与第一栅极结构和第二栅极结构直接接触。

    STRESS-GENERATING STRUCTURE FOR SEMICONDUCTOR-ON-INSULATOR DEVICES
    8.
    发明申请
    STRESS-GENERATING STRUCTURE FOR SEMICONDUCTOR-ON-INSULATOR DEVICES 有权
    半导体绝缘体器件的应力发生结构

    公开(公告)号:US20090079026A1

    公开(公告)日:2009-03-26

    申请号:US11860851

    申请日:2007-09-25

    IPC分类号: H01L29/00 H01L21/762

    摘要: A stack pad layers including a first pad oxide layer, a pad nitride layer, and a second pad oxide layer are formed on a semiconductor-on-insulator (SOI) substrate. A deep trench extending below a top surface or a bottom surface of a buried insulator layer of the SOI substrate and enclosing at least one top semiconductor region is formed by lithographic methods and etching. A stress-generating insulator material is deposited in the deep trench and recessed below a top surface of the SOI substrate to form a stress-generating buried insulator plug in the deep trench. A silicon oxide material is deposited in the deep trench, planarized, and recessed. The stack of pad layer is removed to expose substantially coplanar top surfaces of the top semiconductor layer and of silicon oxide plugs. The stress-generating buried insulator plug encloses, and generates a stress to, the at least one top semiconductor region.

    摘要翻译: 在绝缘体上半导体(SOI)基板上形成包括第一衬垫氧化物层,衬垫氮化物层和第二焊盘氧化物层的叠层焊盘层。 通过光刻方法和蚀刻形成在SOI衬底的掩埋绝缘体层的顶表面或底表面之下延伸并包围至少一个顶部半导体区域的深沟槽。 应力产生绝缘体材料沉积在深沟槽中并凹陷在SOI衬底的顶表面下方,以在深沟槽中形成应力产生的埋入绝缘体插头。 氧化硅材料沉积在深沟槽中,平坦化和凹陷。 去除衬垫层的堆以暴露顶部半导体层和氧化硅插塞的基本上共面的顶表面。 应力产生埋层绝缘体塞封闭并产生至少一个顶部半导体区域的应力。

    Transistor having dielectric stressor elements at different depths from a semiconductor surface for applying shear stress
    9.
    发明授权
    Transistor having dielectric stressor elements at different depths from a semiconductor surface for applying shear stress 失效
    晶体管具有与半导体表面不同深度的介电应力元件,用于施加剪切应力

    公开(公告)号:US07476938B2

    公开(公告)日:2009-01-13

    申请号:US11164373

    申请日:2005-11-21

    IPC分类号: H01L29/00

    摘要: A chip is provided which includes an active semiconductor region and a field effect transistor (“FET”) having a channel region, a source region and a drain region all disposed within the active semiconductor region. The FET has a longitudinal direction in a direction of a length of the channel region, and a transverse direction in a direction of a width of the channel region. A buried dielectric stressor element has a horizontally extending upper surface at a first depth below a major surface of a portion of the active semiconductor region, such as an east portion of the active semiconductor region. A surface dielectric stressor element is disposed laterally adjacent to the active semiconductor region at the major surface of the active semiconductor region. The surface dielectric stressor element extends from the major surface to a second depth not substantially greater than the first depth. The stresses applied by the buried and surface dielectric stressor elements cooperate together to apply a shear stress to the channel region of the FET.

    摘要翻译: 提供一种芯片,其包括有源半导体区域和具有全部设置在有源半导体区域内的沟道区域,源极区域和漏极区域的场效应晶体管(“FET”)。 FET在通道区域的长度方向和沟道区域的宽度方向的横向方向上具有长度方向。 掩埋介质应力元件在有源半导体区域的一部分的主表面下方的第一深度(例如有源半导体区域的东部)处具有水平延伸的上表面。 在有源半导体区域的主表面处,表面介电应力元件横向邻近有源半导体区域设置。 表面介电应力元件从主表面延伸到不大于第一深度的第二深度。 由埋层和表面介电应力元件施加的应力协同工作,对FET的沟道区施加剪切应力。

    Structure and method for improved stress and yield in pFETs with embedded SiGe source/drain regions
    10.
    发明授权
    Structure and method for improved stress and yield in pFETs with embedded SiGe source/drain regions 有权
    具有嵌入式SiGe源极/漏极区域的pFET的应力和产量的结构和方法

    公开(公告)号:US07358551B2

    公开(公告)日:2008-04-15

    申请号:US11161066

    申请日:2005-07-21

    IPC分类号: H01L29/76

    摘要: The present invention provides a technique for forming a CMOS structure including at least one pFET that has a stressed channel which avoids the problems mentioned in the prior art. Specifically, the present invention provides a method for avoiding formation of deep canyons at the interface between the active area and the trench isolation region, without requiring a trench isolation pulldown, thereby eliminating the problems of silicide to source/drain shorts and contact issues. At the same time, the method of the present invention provides a structure that allows for a facet to form at the spacer edge, retaining the Miller capacitance benefit that such a structure provides. The inventive structure also results in higher uniaxial stress in the MOSFET channel compared to one which allows for a facet to grow at the trench isolation edge.

    摘要翻译: 本发明提供了一种用于形成包括至少一个具有应力通道的pFET的CMOS结构的技术,其避免了现有技术中提到的问题。 具体地,本发明提供了一种避免在有源区和沟槽隔离区之间的界面处形成深峡谷的方法,而不需要沟槽隔离下拉,从而消除了硅化物对源/漏短路和接触问题的问题。 同时,本发明的方法提供了允许在间隔物边缘处形成小面的结构,保持了这种结构所提供的米勒电容有益效果。 与允许小面在沟槽隔离边缘生长的结构相比,本发明的结构还导致MOSFET沟道中更高的单轴应力。