Abstract:
A panel includes a plurality of microholes arranged in a pattern and filled with light transmissive polymeric material. The light transmissive polymeric material occludes the microholes and is set, or cured, by exposure to an energy source using at least two discrete exposure periods separated by an idle or rest period. The uniformity of the microholes is thereby improved.
Abstract:
Apparatus and techniques for laser-processing workpieces can be improved, and new functionalities can be provided. Some embodiments discussed relate to processing of workpieces in a manner resulting in enhanced accuracy, throughput, etc. Other embodiments relate to realtime Z-height measurement and, when suitable, compensation for certain Z-height deviations. Still other embodiments relate to modulation of scan patterns, beam characteristics, etc., to facilitate feature formation, avoid undesirable heat accumulation, or otherwise enhance processing throughput. A great number of other embodiments and arrangements are also detailed.
Abstract:
Systems and methods for laser processing continuously moving sheet material include one or more laser processing heads configured to illuminate the moving sheet material with one or more laser beams. The sheet material may include, for example, an optical film continuously moving from a first roller to a second roller during a laser process. In one embodiment, a vacuum chuck is configured to removably affix a first portion of the moving sheet material thereto. The vacuum chuck controls a velocity of the moving sheet material as the first portion is processed by the one or more laser beams. In one embodiment, a conveyor includes a plurality of vacuum chucks configured to successively affix to different portions of the sheet material during laser processing.
Abstract:
An improved method for singulation of electronic substrates into dice uses a laser to first form cuts in the substrate and then chamfers the edges of the cuts by altering the laser parameters. The chamfers increase die break strength by reducing the residual damage and removes debris caused by the initial laser cut without requiring additional process steps, additional equipment or consumable supplies.
Abstract:
Systems and methods for laser processing continuously moving sheet material include one or more laser processing heads configured to illuminate the moving sheet material with one or more laser beams. The sheet material may include, for example, an optical film continuously moving from a first roller to a second roller during a laser process. In one embodiment, a vacuum chuck is configured to removably affix a first portion of the moving sheet material thereto. The vacuum chuck controls a velocity of the moving sheet material as the first portion is processed by the one or more laser beams. In one embodiment, a conveyor includes a plurality of vacuum chucks configured to successively affix to different portions of the sheet material during laser processing.