Abstract:
Apparatus and techniques for laser-processing workpieces can be improved, and new functionalities can be provided. Some embodiments discussed relate to use of beam characterization tools to facilitate adaptive processing, process control and other desirable features. Other embodiments relate to laser power sensors incorporating integrating spheres. Still other embodiments relate to workpiece handling systems capable of simultaneously providing different workpieces to a common laser-processing apparatus. A great number of other embodiments and arrangements are also detailed.
Abstract:
Apparatus and techniques for laser-processing workpieces can be improved, and new functionalities can be provided. Some embodiments discussed relate to processing of workpieces in a manner resulting in enhanced accuracy, throughput, etc. Other embodiments relate to realtime Z-height measurement and, when suitable, compensation for certain Z-height deviations. Still other embodiments relate to modulation of scan patterns, beam characteristics, etc., to facilitate feature formation, avoid undesirable heat accumulation, or otherwise enhance processing throughput. A great number of other embodiments and arrangements are also detailed.
Abstract:
The invention is a method and an apparatus for marking an article and the article thus marked. It includes providing the article. Generating a plurality of groups of laser pulses. At least one of the plurality of groups is generated by modulating a beam of laser pulses to form a plurality of beamlets. Each, of the plurality of beamlets, include at least one laser pulse. It also includes directing the plurality of groups of laser pulses onto the article such that laser pulses within the at least one of the plurality of groups impinge upon the article at spot areas that do not overlap one another, wherein laser pulses within the plurality of groups are configured to produce a visible mark on the article.
Abstract:
Systems and methods for laser processing continuously moving sheet material include one or more laser processing heads configured to illuminate the moving sheet material with one or more laser beams. The sheet material may include, for example, an optical film continuously moving from a first roller to a second roller during a laser process. In one embodiment, a vacuum chuck is configured to removably affix a first portion of the moving sheet material thereto. The vacuum chuck controls a velocity of the moving sheet material as the first portion is processed by the one or more laser beams. In one embodiment, a conveyor includes a plurality of vacuum chucks configured to successively affix to different portions of the sheet material during laser processing.
Abstract:
The invention is a method and an apparatus for marking an article and the article thus marked. It includes providing the article. Generating a plurality of groups of laser pulses. At least one of the plurality of groups is generated by modulating a beam of laser pulses to form a plurality of beamlets. Each, of the plurality of beamlets, include at least one laser pulse. It also includes directing the plurality of groups of laser pulses onto the article such that laser pulses within the at least one of the plurality of groups impinge upon the article at spot areas that do not overlap one another, wherein laser pulses within the plurality of groups are configured to produce a visible mark on the article.
Abstract:
Systems and methods for laser processing continuously moving sheet material include one or more laser processing heads configured to illuminate the moving sheet material with one or more laser beams. The sheet material may include, for example, an optical film continuously moving from a first roller to a second roller during a laser process. In one embodiment, a vacuum chuck is configured to removably affix a first portion of the moving sheet material thereto. The vacuum chuck controls a velocity of the moving sheet material as the first portion is processed by the one or more laser beams. In one embodiment, a conveyor includes a plurality of vacuum chucks configured to successively affix to different portions of the sheet material during laser processing.