Abstract:
Methods and apparatus for separating substrates are disclosed, as are articles formed from the separated substrates. A method of separating a substrate having first and second surfaces includes directing a beam of laser light to pass through the first surface and, thereafter, to pass through the second surface. The beam of laser light has a beam waist located at a surface of the substrate or outside the substrate. Relative motion between the beam of laser light and the substrate is caused to scan a spot on a surface of the substrate to be scanned along a guide path. Portions of the substrate illuminated within the spot absorb light within the beam of laser light so that the substrate can be separated along the guide path.
Abstract:
The present invention is a method for separating a workpiece from a common substrate. It includes the steps of providing the workpiece, generating, within a beam source, a beam of laser pulses configured to modify a portion of the workpiece, determining a depth for creating a modified region based upon a characteristic of the workpiece and modifying a plurality of regions within the workpiece to form a plurality of modified regions. Modifying the plurality of regions includes directing the beam of laser pulses from an output of the beam source onto the workpiece, causing relative motion between the workpiece and the output of the beam source while directing the beam of laser pulses onto workpiece, and modifying a characteristic of the pulses of the beam upon generating a number of pulses which generally correspond to creating the modified regions to the determined depth.
Abstract:
A method for laser processing provides a coating material (130) applied to a rough surface (42) of a substrate (44) to mitigate adverse optical effects that would be caused by roughness of the surface (42). Laser pulses (52) of the laser output of suitable parameters can be directed and focused to internally mark the substrate (44) material without damaging the rough surface (42) after passing through the coating material (130).
Abstract:
The invention is a method and apparatus for creating a color and optical density selectable visible mark on an anodized aluminum specimen. The method includes providing a laser marking system having a laser, laser optics and a controller operatively connected to said laser to control laser pulse parameters and a controller with stored laser pulse parameters, selecting the stored laser pulse parameters associated with the desired color and optical density, directing the laser marking system to produce laser pulses having laser pulse parameters associated with the desired color and optical density including temporal pulse widths greater than about 1 and less than about 1000 picoseconds to impinge upon said anodized aluminum.
Abstract:
The invention is an apparatus, for performing the method, and the method including the steps of providing a workpiece, contacting a portion of an exterior surface of the workpiece to an acoustic couplant such that an interface between the acoustic couplant and the portion of the exterior surface is at least substantially continuous across the portion of the exterior surface, and propagating a crack through the workpiece. A portion of the acoustic couplant at the interface has acoustic impedance relative to the acoustic energy that is greater than 400 kg·m−2·s−1.
Abstract:
The invention is method, and an apparatus for performing the method having the steps of providing a workpiece, generating a plurality of free electrons at a region of the exterior surface, and machining a portion of the workpiece adjoining the first region by directing laser energy onto the workpiece.
Abstract:
The present invention is a method for separating a workpiece from a common substrate. It includes the steps of providing the workpiece, generating, within a beam source, a beam of laser pulses configured to modify a portion of the workpiece, determining a depth for creating a modified region based upon a characteristic of the workpiece and modifying a plurality of regions within the workpiece to form a plurality of modified regions. Modifying the plurality of regions includes directing the beam of laser pulses from an output of the beam source onto the workpiece, causing relative motion between the workpiece and the output of the beam source while directing the beam of laser pulses onto workpiece, and modifying a characteristic of the pulses of the beam upon generating a number of pulses which generally correspond to creating the modified regions to the determined depth.
Abstract:
Methods and apparatus for machining substrates are disclosed, as are articles formed from the separated substrates. A method of machining a substrate having a first surface and a second surface opposite the first surface can include forming a first recess in the substrate extending from the first surface toward the second surface, forming a second recess in the substrate extending from the second surface toward the first surface, and removing a portion of the substrate extending from the first recess to the second recess to form an opening in the substrate.
Abstract:
The angle of incidence (ω) and azimuth (φ) of a beam axis (32) can be moved relative to a workpiece (22) to provide desirable taper characteristics to a side wall (124) of a resulting kerf (120) produced by a focused laser beam (30) propagated along the beam axis (32).
Abstract:
The invention is method and an apparatus for performing the method having the steps of providing a workpiece, cleaving the workpiece to form a first unit piece and a second unit piece having a spatial relationship with the first unit piece in which the second unit piece abuts the first unit piece. Without substantially altering the spatial relationship after cleaving the workpiece, forming a first crack within the first unit piece and propagating the first crack from the first unit piece into the second unit piece.