摘要:
A high-strength die-quenched part 1 is formed by heating a high-strength steel sheet 11 up to an austenite region, hot stamping and cooling inside a mold, and its microstructure has the martensite wherein carbide particles 2 are finely dispersed over an entire region including prior-austenite grain boundaries. It is desirable that the prior-austenite grain size in the microstructure of the high-strength steel sheet, which is a base material, be 10 μm or smaller. The high-strength die-quenched part has high-strength and high-ductility thanks to its martensite.
摘要:
A high-strength die-quenched part 1 is formed by heating a high-strength steel sheet 11 up to an austenite region, hot stamping and cooling inside a mold, and its microstructure has the martensite wherein carbide particles 2 are finely dispersed over an entire region including prior-austenite grain boundaries. It is desirable that the prior-austenite grain size in the microstructure of the high-strength steel sheet, which is a base material, be 10 μm or smaller. The high-strength die-quenched part has high-strength and high-ductility thanks to its martensite.
摘要:
A welding structural part 1 is manufactured by overlapping the surfaces of steel sheets 2, and forming a weld zone by spot welding. The weld zone 3 includes: a weld nugget 4; and a heat affected zone 5 surrounding the weld nugget 4, wherein the hardness in the weld zone increases along an exterior region 6 of the heat affected zone 5 toward the heat affected zone 5, and then decreases along the heat affected zone 5 toward the central region of the weld nugget 4. In the boundary region between the weld nugget 4 and the heat affected zone 5, the weld nugget 4 may have a convex portion 4A bulging into the heat affected zone 5 along the overlapped portion. The steel sheets 2 contain carbon in 0.15 mass % or more.
摘要:
A welding structural part 1 is manufactured by overlapping the surfaces of steel sheets 2, and forming a weld zone by spot welding. The weld zone 3 includes: a weld nugget 4; and a heat affected zone 5 surrounding the weld nugget 4, wherein the hardness in the weld zone increases along an exterior region 6 of the heat affected zone 5 toward the heat affected zone 5, and then decreases along the heat affected zone 5 toward the central region of the weld nugget 4. In the boundary region between the weld nugget 4 and the heat affected zone 5, the weld nugget 4 may have a convex portion 4A bulging into the heat affected zone 5 along the overlapped portion. The steel sheets 2 contain carbon in 0.15 mass % or more.
摘要:
There is provided an ultrahigh strength steel sheet containing 0.10 to 0.40 mass % of C, 0.01 to 3.5 mass % of Cr, at least one selected from the group consisting of 0.10 to 2.0 mass % of Mo, 0.20 to 1.5 mass % of W, 0.002 to 1.0 mass % of V, 0.002 to 1.0 mass % of Ti and 0.005 to 1.0 mass % of Nb, 0.02 mass % or less of P and 0.01 mass % or less of S as impurities and the balance being Fe and unavoidable impurities based on the total mass of the steel sheet and having a base structure of lower bainite, a prior austenite grain size of 30 μm or smaller and a tensile strength of 980 MPa or higher. There is also provided an automotive strength part using the ultrahigh strength steel sheet.
摘要:
There is provided a high-tensile steel sheet containing 0.15 to 0.25 mass % of C, 0.1 to 2.0 mass % of Si, 0.10 to 1.0 mass % of Mn, 0.5 to 3.5 mass % of Cr, 0.02 mass % or less of P, 0.01 mass % or less of S and the balance being Fe and unavoidable impurities based on the total mass of the steel sheet and satisfying a content ratio of Mn/(Mn+Cr)
摘要:
For forming a tubular work into a shaped hollow product by using hydroforming process, a method and a device are described. In the method, female and male dies are prepared. The female die has a longitudinally extending cavity which has a polygonal cross section when receiving the male die. The tubular work is placed into the cavity of the female die. The interior of the tubular work is then fed with a hydraulic fluid, and the pressure of the fluid is increased to a given level. The given level is smaller than a critical level that causes a bulging of the tubular work. The male die is then pressed against the tubular work to deform the same while keeping the hydraulic fluid at the given level, thereby forming a shaped hollow product that has a polygonal cross section that conforms to that of the cavity. The pressing work is continued until a circumferential length of the shaped hollow product becomes shorter than that of the tubular work.
摘要:
An object of the present invention is to provide a lightweight strengthening member for an automobile, excellent in crush resistance in the axial direction and having high flexural strength. Further, another object thereof is to provide a strengthening member which does not generating cracks even when a high-strength steel sheet is used. The present invention provides: a strengthening member 1 for an automobile, being a lengthy strengthening member 1 having concave portions 3 at the four corners of a basic rectangular cross section 2 and forming a cruciform closed section as a whole, characterized in that the wall thickness of the concave portions 3 is 5 to 30% thicker than the wall thickness of the portions excluding the concave portions, namely, the side walls 4 and the top walls 5; further, a strengthening member 1 for an automobile, characterized in that the hardness of the concave portions 3 is 5% or more higher than the hardness of the portions excluding the concave portions, namely, the side walls 4 and the top walls 5; and furthermore, a strengthening member 1 for an automobile formed by drawing or hydroforming.