Abstract:
A single-ended sense amplifier circuit of the invention comprises first and second MOS transistors and first and second precharge circuits. The first MOS transistor drives the bit line to a predetermined voltage and switches connection between the bit line and a sense node and the second MOS transistor whose gate is connected to the sense node amplifies the signal via the first MOS transistor. The first precharge circuit precharges the bit line to a first potential and the second precharge circuit precharges the sense node to a second potential. Before sensing operation, the bit line is driven to the predetermined voltage when the above gate voltage is controlled to decrease. The predetermined voltage is appropriately set so that a required voltage difference at the sense node between high and low levels can be obtained near a changing point between charge transfer/distributing modes.
Abstract:
A semiconductor memory device comprises a memory cell array, first and second bit lines, first and second amplifiers, and a sense amplifier control circuit. An amplifying element in the first sense amplifier amplifiers the signal of the first bit line and converts it into an output current. The second bit line is selectively connected to the first bit line via the first sense amplifier. A signal voltage decision unit in the second sense amplifier determines the signal level of the second bit line being supplied with the output current. The sense amplifier control circuit controls connection between the amplifying element and the unit in accordance with a determination timing, which switches the above connection from a connected state to a disconnected state at a first timing in a normal operation and switches in the same manner at a delayed second timing in a refresh operation.
Abstract:
A semiconductor device includes a first circuit node supplied with a first signal changing between first and second logic levels, a second circuit node supplied with a second signal changing between the first and second logic levels, a third circuit node, a first transistor having a gate electrically connected to the first circuit node and a source-drain path electrically connected between the second and third circuit nodes, the first transistor being rendered conductive when the first signal is at the second logic level, a fourth circuit node supplied with a voltage level being close to or the same as the second logic level, and a second transistor having a gate electrically connected to the first circuit node and a source-drain path electrically connected between the third and fourth circuit nodes, the second transistor being rendered conductive when the first signal is at the first logic level.
Abstract:
A single-ended sense amplifier circuit of the invention comprises first and second MOS transistors and first and second precharge circuits. The first MOS transistor drives the bit line to a predetermined voltage and switches connection between the bit line and a sense node and the second MOS transistor whose gate is connected to the sense node amplifies the signal via the first MOS transistor. The first precharge circuit precharges the bit line to a first potential and the second precharge circuit precharges the sense node to a second potential. Before sensing operation, the bit line is driven to the predetermined voltage when the above gate voltage is controlled to decrease. The predetermined voltage is appropriately set so that a required voltage difference at the sense node between high and low levels can be obtained near a changing point between charge transfer/distributing modes.
Abstract:
A semiconductor device includes a first circuit node supplied with a first signal changing between first and second logic levels, a second circuit node supplied with a second signal changing between the first and second logic levels, a third circuit node, a first transistor having a gate electrically connected to the first circuit node and a source-drain path electrically connected between the second and third circuit nodes, the first transistor being rendered conductive when the first signal is at the second logic level, a fourth circuit node supplied with a voltage level being close to or the same as the second logic level, and a second transistor having a gate electrically connected to the first circuit node and a source-drain path electrically connected between the third and fourth circuit nodes, the second transistor being rendered conductive when the first signal is at the first logic level.
Abstract:
A semiconductor device includes a memory cell, a first bit line coupled to the memory cell, a second bit line, a first sense amplifier circuit including first and second transistors, the first transistor including a gate coupled to the first bit line, and the first and second transistors are coupled in series between the second bit line and a first voltage line, a temperature detection circuit configured to detect a temperature of the semiconductor device, and a control circuit configured to receive an output of the temperature detection circuit and supply a control signal to a gate of the second transistor.