Abstract:
A method for doping a dielectric material by pulsing a first dopant precursor, purging the non-adsorbed precursor, pulsing a second precursor, purging the non-adsorbed precursor, and pulsing a oxidant to form an intermixed layer of two (or more) metal oxide dielectric dopant materials. The method may also be used to form a blocking layer between a bulk dielectric layer and a second electrode layer. The method improves the control of the composition and the control of the uniformity of the dopants throughout the thickness of the doped dielectric material.
Abstract:
A semiconductor chip 109 is mounted on a substrate 100, first wire group 120 and a second wire group 118 having a wire length shorter than the first wire group are provided so as to connect the substrate 100 and the semiconductor chip 109 to each other, and a sealing resin 307 is injected from the first wire group 120 toward the second wire group 118 so as to form a sealer 401 covering the semiconductor chip 109, the first wire group 120, and the second wire group 118.
Abstract:
Provided is a semiconductor device including first and second semiconductor pillars formed on a surface of a semiconductor substrate and aligning in a first direction; a first interconnect extending in a second direction intersecting with the first direction and provided between the first and second semiconductor pillars; and a first contact pad located over the first interconnect, the first contact pad being in contact with and electrically connected to the first semiconductor pillar at a side surface thereof, while being electrically isolated from the second semiconductor pillar.
Abstract:
A device, comprising an output terminal; an output circuit coupled to the output terminal and having an adjustable impedance; and an impedance adjustment circuit adjusting stepwise the adjustable impedance so as to head toward a first reference impedance. The impedance adjustment circuit changes the adjustable impedance by a first amount when the adjustable impedance is within a first range, and changes the adjustable impedance by a second amount when the adjustable impedance is out of the first range. The first amount is smaller than the second amount.
Abstract:
A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a flash layer between the dielectric layer and the first electrode layer. A method for reducing the leakage current in DRAM Metal-Insulator-Metal capacitors includes forming a capping layer between the dielectric layer and the second electrode layer. The flash layer and the capping layer can be formed using an atomic layer deposition (ALD) technique. The precursor materials used for forming the flash layer and the capping layer are selected such they include at least one metal-oxygen bond. Additionally, the precursor materials are selected to also include “bulky” ligands.
Abstract:
A memory mat (101) includes a main body portion (200) that includes a first capacitor (203A), a linear conductive film (204) that is formed between the main body portion (200) and a peripheral circuit (104), and a second capacitor (203B) that is formed to be in contact with the conductive film (204) at a bottom of the second capacitor (203B). The first capacitor (203A) is in contact with a contact layer (202) at a bottom of the first capacitor (203A).
Abstract:
A single-ended sense amplifier circuit of the invention comprises first and second MOS transistors and first and second precharge circuits. The first MOS transistor drives the bit line to a predetermined voltage and switches connection between the bit line and a sense node and the second MOS transistor whose gate is connected to the sense node amplifies the signal via the first MOS transistor. The first precharge circuit precharges the bit line to a first potential and the second precharge circuit precharges the sense node to a second potential. Before sensing operation, the bit line is driven to the predetermined voltage when the above gate voltage is controlled to decrease. The predetermined voltage is appropriately set so that a required voltage difference at the sense node between high and low levels can be obtained near a changing point between charge transfer/distributing modes.
Abstract:
A method for forming a capacitor stack includes forming a first bottom electrode layer including a conductive metal nitride material. A second bottom electrode layer is formed above the first bottom electrode layer. The second bottom electrode layer includes a conductive metal oxide material, wherein the crystal structure of the conductive metal oxide material promotes a desired high-k crystal phase of a subsequently deposited dielectric layer. A dielectric layer is formed above the second bottom electrode layer. Optionally, an oxygen-rich metal oxide layer is formed above the dielectric layer. Optionally, a third top electrode layer is formed above the oxygen-rich metal oxide layer. The third top electrode layer includes a conductive metal oxide material. A fourth top electrode layer is formed above the third top electrode layer. The fourth top electrode layer includes a conductive metal nitride material.
Abstract:
Disclosed herein is a device that includes: external terminals; a first chip including a first control circuit that generates a first control signal; and a second chip stacked with the first chip. The second chip includes: a first test terminal supplied with a first test signal and being free from connecting to any one of the external terminals; a second test terminal supplied with the first test signal and coupled to one of the external terminals without connecting to any one of control circuits of the first chip; a first normal terminal supplied with the first control signal and coupled to another of the external terminals with an intervention of the first control circuit of the first chip; and a first selection circuit including first input node coupled in common to the first and second test terminals and the second input node coupled to the first normal terminal.
Abstract:
A device includes a substrate, a semiconductor chip, first and second pads, and a first wiring layer. The substrate includes first and second surfaces. The semiconductor chip includes third and fourth surfaces. The third surface faces toward the first surface. The first and second pads are provided on the third surface. The first and second pads are connected to each other. The first wiring layer is provided on the second surface of the substrate. The first wiring layer is connected to the first pad.