Abstract:
An example HVAC system includes an HVAC component, and an HVAC control configured to control the HVAC component according to an HVAC system configuration parameter. The HVAC control includes a controller wireless interface and a memory. The system also includes a mobile device having a user interface and a mobile wireless interface in wireless communication with the controller wireless interface of the HVAC control. The mobile device is configured to display the HVAC system configuration parameter on the user interface, receive user input settings for the HVAC system configuration parameter, and wirelessly transmit the received user input settings to the controller wireless interface of the HVAC control. The HVAC control is configured to store the received user input settings in the memory of the HVAC control to control the HVAC component. Example methods of controlling an HVAC system are also disclosed.
Abstract:
In exemplary embodiments, wiring harness assemblies for electrical equipment and related methods are disclosed. In an exemplary embodiment, a wiring harness assembly for electrical equipment generally includes a first connector configured for connecting to a wiring harness, a second connector configured for mounting to a panel, and one or more conductors connecting the first connector with the second connector.
Abstract:
In exemplary embodiments, wiring harness assemblies for electrical equipment and related methods are disclosed. In an exemplary embodiment, a wiring harness assembly for electrical equipment generally includes a first connector configured for connecting to a wiring harness, a second connector configured for mounting to a panel, and one or more conductors connecting the first connector with the second connector.
Abstract:
Disclosed are exemplary embodiments of controls for heating, ventilation, and/or air conditioning systems. In an exemplary embodiment, a control for a heating, ventilation, and/or air conditioning system includes an alphanumeric display and one or more input device. A processor of the control is configured to receive a user input through the input device(s), and in response to the user input, reorient a display of a message relative to the alphanumeric display.
Abstract:
In exemplary embodiments, wiring harness assemblies for electrical equipment and related methods are disclosed. In an exemplary embodiment, a wiring harness assembly for electrical equipment generally includes a first connector configured for connecting to a wiring harness, a second connector configured for mounting to a panel, and one or more conductors connecting the first connector with the second connector.
Abstract:
A heat pump controller for use in a heat exchange system includes a first input connector, a second input connector, and a computing device. The first input connector is configured to be coupled to a first sensor for receiving a first signal from the first sensor. The second input connector is configured to be selectively coupled to a second sensor for selectively receiving a second signal from the second sensor. The computing device is configured to initiate a defrost cycle, and is selectively configurable between a plurality of defrost modes including a first defrost mode and a second defrost mode. In the first defrost mode the computing device initiates the defrost cycle based on the first signal received from the first sensor and a period of time. In the second defrost mode, the computing device initiates the defrost cycle based on at least the second signal received from the second sensor.
Abstract:
A flame sensor assembly includes a flame sense rod and a flame sensor body. The flame sense rod includes a flame sensor end and a coupling end opposite the flame sensor. The flame sensor body defines a receptacle for receiving the coupling end of the flame sense rod, and includes an adjustable positioning bracket. The assembly also includes a wiring adapter for connecting the flame sensor body with a flame sense signal connector, and a mounting bracket adapted to mount the flame sensor body to a heating device with the flame sensor end of the flame sense rod positioned adjacent a flame of the heating device. Methods of replacing a flame sensor assembly for a heating device are also disclosed.
Abstract:
A flame sensor assembly includes a flame sense rod and a flame sensor body. The flame sense rod includes a flame sensor end and a coupling end opposite the flame sensor. The flame sensor body defines a receptacle for receiving the coupling end of the flame sense rod, and includes an adjustable positioning bracket. The assembly also includes a wiring adapter for connecting the flame sensor body with a flame sense signal connector, and a mounting bracket adapted to mount the flame sensor body to a heating device with the flame sensor end of the flame sense rod positioned adjacent a flame of the heating device. Methods of replacing a flame sensor assembly for a heating device are also disclosed.
Abstract:
A controller for use in a gas appliance system includes a circuit board, a plurality of connectors and a processor mounted on the circuit board. The processor controls operation of the gas appliance using, in part, at least one connector of the plurality of connectors and control settings for an intermittent pilot (IP) system in response to a user selection to configure the controller to control an IP system, and controls operation of the gas appliance using, in part, at least one connector of the plurality of connectors and control settings for a direct spark ignition (DSI) system in response to a user selection to configure the controller to control a DSI system.
Abstract:
A heat pump controller for use in a heat exchange system includes a computing device and a user interface coupled to the computing device. The computing device is configured to initiate a defrost cycle based on one of a plurality of user-selectable defrost modes, and the user interface is configured to display the user-selectable defrost modes and receive a user selection corresponding to one of the user-selectable defrost modes.