Abstract:
Disclosed are plasticizers, salts thereof, chelates thereof and cleavage derivatives thereof, that exhibit a superior combination of properties. The plasticizers can be used for a variety of purposes, including food preparation, cosmetics, beverages and polymeric matrices. The plasticizers can be prepared by esterifying gallic acid, fulvic acid, or tannic acid.
Abstract:
Technologies are described for methods and compounds for mitigating dag on hair. The method comprises applying a monofunctional compound comprising a hydrophobic tail and a reactive head to the hair and applying a difunctional compound to the hair. The difunctional compound has a first functional component and a second functional component. The application of the difunctional compound enables the first functional component to react with the reactive head of the monofunctional compound, the second functional component to form a matrix in situ with the hair, and the hydrophobic tail of the monofunctional compound to extend from the hair. The hydrophobic tail imparts its hydrophobicity to the hair to mitigate the dag.
Abstract:
Antimicrobial or antiseptic polymers may be produced by incorporation of an antimicrobial ingredient into the polymer by grafting, copolymerization, or via a combined antimicrobial/plasticizer ingredient. The polymer may be produced as a masterbatch, or a ready to process polymer for producing antimicrobial products. The reactions may be conducted in a reactive extruder to provide a single-step synthesis.
Abstract:
Disclosed are antioxidative natural compounds, their salts, chelates and cleavage derivatives that exhibit a superior combination of properties. The compounds can be used for a variety of purposes, including the stabilization of polymers. The compounds can be prepared by substantially cleaving a humic acid of formula I followed by esterification to provide at least one antioxidant compounds of formula V, formula VI, formula VII, formula VIII, salts thereof, or chelates thereof.
Abstract:
Disclosed are compositions directed to resealable containers and methods directed to making and using resealable containers. Also disclosed are methods of containing an article. The resealable containers can include a thermotropic adhesive sealing composition to aid in opening and sealing the containers.
Abstract:
Fluorinated siloxane compositions, and methods of making and using the fluorinated siloxanes are disclosed. The polymers described herein may exhibit self-healing properties, a low dielectric constant, and a low refractive index. In some embodiments, a method of making a siloxane compound may involve contacting a silicon metal with a fluorinated compound to form a dichlorosilane compound, hydrolyzing the dichlorosilane compound to form a fluorinated tetrasiloxane compound, and contacting the fluorinated tetrasiloxane compound with a metal catalyst to form a fluorinated cyclic siloxane (D4) compound.
Abstract:
Polymeric barriers for organic light emitting diodes are formed in-situ by encapsulation or polymerization. Encapsulation with melamine-cyanurate is performed using sublimation reaction technique. An encapsulation technique involves curing a layer of resin made by mixing a polyaza aryl compound, such as melamine, melam, or melem, with a cyanuryl triglycidyl ether. Another encapsulation technique involves curing a layer of resin made by mixing the polyaza aryl aromatic compound in 2,4,6-tricyanatophenyl glycidyl ether or tetracyanatobenzene applied to an organic light emitting diode. Photo catalytic curing of the coating may be achieved in the presence of catalysts such as titanium IV oxide acetylacetonate.
Abstract:
Disclosed herein are compositions and methods of making phenolic compounds and phenolic resins. The resins include multifunctional epoxies, amino glycidyl derivatives, alkanoate derivatives, alkyl ether derivatives, and multi-functional amines prepared from hydroxymethyl derivatives of novolac resin.
Abstract:
Methods for converting waste streams from the wood pulping industry to high-value surfactants are described. For example, isolated lignin and lignosulfonate or waste streams containing lignin and lignosulfonate can be directly converted to surfactants, or they can be first converted to methylol derivatives and treated with further reagents to produce surfactants.
Abstract:
Multifunctional melamine epoxy resins, methylols and amines are provided. Methods of making multifunctional melamine epoxy resins, methylols and amines are also provided.