摘要:
New and useful optical components are provided, for use in measuring projection lens characteristics of an optical imaging system that images a substrate. The optical components comprise an array of full NA imagers located at the substrate plane, and a relay system for imaging the imagers to a detector that is remote from the substrate.
摘要:
An optical assembly for a system for inspecting or measuring of an object is provided that is configured to move as a unit with a system, as the system is pointed at a target, and eliminates the need for a large scanning (pointing) mirror that is moveable relative to other parts of the system. The optical assembly comprises catadioptric optics configured to fold the optical path of the pointing beam and measurement beam that are being directed through the outlet of the system, to compress the size of the optical assembly.
摘要:
An optical assembly for a system for inspecting or measuring of an object is provided that is configured to move as a unit with a system, as the system is pointed at a target, and eliminates the need for a large scanning (pointing) mirror that is moveable relative to other parts of the system. The optical assembly comprises catadioptric optics configured to fold the optical path of the pointing beam and measurement beam that are being directed through the outlet of the system, to compress the size of the optical assembly.
摘要:
An exposure apparatus (10) for transferring a mask pattern (12A) from a mask (12) to first and second substrates (14A) (14B) includes an illumination system (18) that generates and simultaneously directs a first beam (32A) at the mask pattern (12A) and a second beam (32B) at the mask pattern (12A). Further, the first beam (32A) is spaced apart from the second beam (32B) at the mask pattern (12A). As provided herein, the first beam (32A) directed at the mask (12) creates a first pattern beam (34A) that is transferred to a first substrate location (33A), and the second beam (32B) directed at the mask (12) creates a second pattern beam (34B) that is transferred to a second substrate location (33B). Moreover, the first substrate location (33A) is spaced apart from the second substrate location (33B). With this design, the first pattern beam (34A) can be transferred to the first substrate (14A) and the second pattern beam (34B) can be simultaneously transferred to the second substrate (14B). As a result thereof, the same mask (12) can be used to simultaneously transfer features to two wafers (14A) (14B) to approximately double the throughput capabilities of the exposure apparatus (10).
摘要:
A compact optical assembly for a laser radar system is provided, that is configured to move as a unit with a laser radar system as the laser radar system is pointed at a target and eliminates the need for a large scanning (pointing) mirror that is moveable relative to other parts of the laser radar. The optical assembly comprises a light source, a lens, a scanning reflector and a fixed reflector that are oriented relative to each other such that: (i) a beam from the light source is reflected by the scanning reflector to the fixed reflector; (ii) reflected light from the fixed reflector is reflected again by the scanning reflector and directed along a line of sight through the lens; and (iii) the scanning reflector is moveable relative to the source, the lens and the fixed reflector, to adjust the focus of the beam along the line of sight.
摘要:
A new and useful method is provided for Goos-Hanchen compensation in an optical autofocus (AF) system that uses light reflected from a substrate to determine changes in the z position of a substrate. According to the method of the invention reflected light from the substrate is provided at a plurality of wavelengths and polarizations, detected and used to make corrections that compensate for the errors due to the Goos-Hanchen effect.
摘要:
A measurement system (22) for measuring the position of a work piece (28) includes a measurement grating (34) and an encoder head (36). The encoder head (36) directs a measurement beam (252) at the measurement grating (34), the measurement beam (252) having an oval shaped cross-section. The encoder head (36) includes a beam shape adjuster (256) positioned in the path of an input measurement beam (240) having a substantially circular cross-sectional shape that transforms the input measurement beam (240) to provide the measurement beam (252) having the oval shaped cross-section.
摘要:
An exposure apparatus (10) for transferring a mask pattern (12A) from a mask (12) to first and second substrates (14A) (14B) includes an illumination system (18) that generates and simultaneously directs a first beam (32A) at the mask pattern (12A) and a second beam (32B) at the mask pattern (12A). Further, the first beam (32A) is spaced apart from the second beam (32B) at the mask pattern (12A). As provided herein, the first beam (32A) directed at the mask (12) creates a first pattern beam (34A) that is transferred to a first substrate location (33A), and the second beam (32B) directed at the mask (12) creates a second pattern beam (34B) that is transferred to a second substrate location (33B). Moreover, the first substrate location (33A) is spaced apart from the second substrate location (33B). With this design, the first pattern beam (34A) can be transferred to the first substrate (14A) and the second pattern beam (34B) can be simultaneously transferred to the second substrate (14B). As a result thereof, the same mask (12) can be used to simultaneously transfer features to two wafers (14A) (14B) to approximately double the throughput capabilities of the exposure apparatus (10).
摘要:
An encoder system and method are provided, that is designed to improve 2D encoder systems and methods in areas such as accuracy, compactness, stability, resolution, and/or light efficiency. Moreover, the system and method of this invention provides a new concept in a retroreflector that while particularly useful in applicants' system and method, is believed to have more general utility in optical imaging systems and methods.
摘要:
An autofocus (AF) system and method is provided that maps the topography of a substrate such as a semiconductor wafer, in a manner that corrects for Goos Hanchen (GH) effect. In addition, a new and useful detector is provided that is particularly useful in an AF system and method. The detector preferably has both color and polarization filtering integrally associated with the detector, so that polarization and color filtering is provided at the detector, on a pixel by pixel basis.