摘要:
An integrated metrology and lithography/etch system and method (10) for micro-electronics device manufacturing. A process control neural network (30) is used to develop an estimated process control parameter (32) for controlling an etching process (28). The process control neural network is responsive to a multi-parameter characterization of a patterned resist feature MPC(PR) (16) developed on a substrate. The process control parameter is used as a feed-forward control for the etching process to develop an actual final mask feature. A multi-parameter characterization of the actual final mask feature MPC(HM) (36) is used as an input to a training neural network (40) for mapping to an ideal process control parameter. The ideal process control parameter is compared to the estimated control parameter to develop an error parameter (46), which is then used to train the process control neural network.
摘要:
A method and apparatus used to calibrate high-resolution electron microscopes where a single standard provides multiple samples, each having a different atomic structure, permits rapid accurate calibration of the entire range of magnifications. The different atomic structure dimensions possess known reference measurement data. The S/TEM is adjusted to focus onto the crystal lattice structure of each sample in a selected sequence. Measurements of these lattice spacings are compared to known dimensions. If S/TEM measurements do not agree with the lattice spacing dimensions, the S/TEM magnification is adjusted to reflect known dimensions. Typical standard exchange and associated processing steps are eliminated by the use of the single standard comprising of a plurality of samples.
摘要:
A system and method of metrology (10) whereby a three dimensional shape profile is defined (16) for a surface feature on a substrate by applying (38) a transform function F(x) to an image intensity map I(x,y) obtained (40) by inspecting the substrate with a scanning electron microscope (12). The transform function F(x) is developed (34) by correlating the image intensity map of a first wafer (18) to a height vector (32) obtained by inspecting the first wafer with a more accurate metrology tool, for example a stylus nanoprofilometer (14). A simple ratio-based transform may be used to develop F(x). An asymmetric multiple parameter characterization of the three dimensional shape profile may be developed (74) by plotting critical space and width dimensions (SL, SR, W1, WR) from a vertical axis (C—C) as a function of height of the feature.
摘要:
Method for fabricating a structure. According to an exemplary embodiment, a structure is made by forming a layer of removable material with a first surface spaced a part from a second surface. The first surface is formed along a first region from which the material is removable. The first surface is altered by removal of material from the layer. Removed material from the first surface is monitored to detect fluctuations in a variable of composition in the layer, and removal of material from the first surface is terminated when the composition of monitored material meets a predetermined criterion. In an alternate embodiment a variable characteristic is imparted to a layer of material as a function of layer thickness and an operation is performed on the layer resulting in removal of material. Samples of removed material are monitored for variation in the characteristic and the operation is modified when a variation conforms with a criterion.
摘要:
The present invention relates to a device for testing particles for composition and concentration. The device includes a particle counter, a collector screen, and a mass spectrometer. In one embodiment, the collector screen is positioned to receive particles received by the particle counter, and the mass spectrometer is positioned to receive counted particles retained on the collector screen.
摘要:
A semiconductor manufacturing automation method for analyzing a patterned feature formed on a semiconductor layer is disclosed. At least one patterned feature is scanned to generate an amplitude modulated waveform signal of the line and neighboring space characteristics. Signal processing is automatically performed on this waveform by an in-line computational source to extract known patterned features based on the profile of the amplitude modulated waveform signal. The extracted waveform segments are subjected to known geometric shapes to determine if the waveform indicates a normal or abnormal patterned feature on a semiconductor layer.
摘要:
In-line process control for 120 nm and 100 nm lithography using the installed scanning electron microscope (SEM) equipment base. A virtual three-dimensional representation of a photoresist feature is developed by applying a transform function to SEM intensity data representing the feature. The transform function correlates highly accurate height vector data, such as provided by a stylus nanoprofilometer or scatterometer, with the highly precise intensity data from the SEM. A multiple parameter characterization of at least one critical dimension of the virtual feature is compared to an acceptance pattern template, with the results being used to control a downstream etch process or an upstream lithography process. A multiple parameter characteristic of a three dimensional representation of the resulting post-etch final feature may be compared to device performance data to further refine the acceptance pattern template.
摘要:
A reflective lens with at least one curved surface formed of polycrystalline material. In one embodiment, a lens structure includes a substrate having a surface of predetermined curvature and a film formed along a surface of the substrate with multiple individual members each having at least one similar orientation relative to the portion of the substrate surface adjacent the member such that collectively the members provide predictable angles for diffraction of x-rays generated from a common source. A system is also provided for performing an operation with x-rays. In one embodiment, a system includes a source for generating the x-rays, a polycrystalline surface region having crystal spacing suitable for reflecting a plurality of x-rays at the same Bragg angle along the region, and transmitting the reflected x-rays to a reference position. An associated method includes providing x-rays to polycrystalline surface region having crystal spacings suitable for reflecting a plurality of x-rays at the same Bragg angle along the region, transmitting the reflected x-rays to a reference position and positioning a sample between the surface region and the reference position so that the x-rays are transmitted through the sample.
摘要:
A chemical mechanical polishing (CMP) process using a chemically active slurry having a polarity selected to affect the relative oxidation rates of respective crystalline planes of a polycrystalline surface being polished. The slurry polarity is controlled to equilibrate the material removal rates from the respective crystalline planes during the CMP process. A polar solute may be added to a base solvent to achieve the desired polarity. A CMP process for a tungsten film may utilize a water-based slurry containing an abrasive agent, an oxidizing agent, and a solute having a polarity less than that of water. The abrasive agent may be colloidal silica, the oxidizing agent may be hydrogen peroxide, and the solute may be benzene.
摘要:
The present invention provides and apparatus and method for scanning a crystalline sample comprising a sample holder, an electron source for generating an electron beam and a scanning actuator for controlling the relative movement between the electron beam and the crystalline sample. In addition, an image processor is provided for processing images from electrons from the crystalline sample and a controller for controlling the scanning actuator to space points on the crystalline sample, at which the electron beam is directed. The points are preferably spaced apart a distance that is at least as large as a known grain size of the crystalline sample. The controller determines a grain orientation with respect to each point within a series of points within a scan area of the crystalline sample. The controller determines an average grain orientation for the crystalline sample for current image and a previously processed image. The controller monitors a variance in the average deviation and terminates the scanning when the variance in the average grain orientation approaches a predetermined value.