摘要:
A lithographic device includes a machine frame which supports a substrate holder, a focusing system and a mask holder in a vertical direction. The substrate holder is displaceable parallel to a horizontal X-direction and a horizontal Y-direction perpendicular to the X-direction by a first positioning device, and the mask holder is displaceable parallel to the X-direction by a second positioning device. The substrate holder and the mask holder are displaced synchronously parallel to the X-direction during exposure of a semiconductor substrate. The second positioning device is capable of positioning the mask holder also parallel to the Y-direction and of rotating it about a vertical axis of rotation. Therefore, a displacement of the mask holder has a parallelism to the X-direction which is determined by a positioning accuracy of the second positioning device and which is not adversely affected by a deviation from parallelism and straightness of a guide of the second positioning device. An accuracy with which the semiconductor substrate is exposed is improved by a factor corresponding to an optical reduction factor of the focusing system.
摘要:
A lithographic device comprising a mask table (5), a projection system (3), a substrate table (1) which is displaceable relative to the projection system (3) by means of a drive unit (21), and a measuring system (39) for measuring a position of the substrate table (1) relative to the projection system (3). A stationary part (157) of the drive unit (21) is fastened to a machine frame (85) of the lithographic device, while a stationary part (51, 53, 55) of the measuring system (39) is fastened to a reference frame (89) of the lithographic device which is dynamically isolated from the machine frame (85) by means of dynamic isolators (95). This prevents vibrations caused in the machine frame (85) by reaction forces of the drive unit (21) from being transmitted to the reference frame (89), so that the accuracy of the measuring system (39) is not adversely affected by such vibrations. The mask table (5) is displaceable relative to the projection system (3) by means of a further drive unit (31) having a stationary part (119) fastened to the machine frame (85), and the measuring system comprises a further stationary part (71, 73, 75) for measuring a position of the mask table (5) relative to the projection system (3), said further stationary part (71, 73, 75) being fastened to the reference frame (89).
摘要:
A positioning device is disclosed. The positioning device has a first part and a second part, the second part further has an object table. The second part may be displaced relative to the first part parallel to the XY-plane and may be rotated about the Z-axis by means of three motors. The motors are Lorentz type motors having a permanent magnet system and an electrical coil system cooperating therewith. The electrical coil systems each have windings which are substantially directed parallel to a main axis of the electrical coil system and perpendicular to the Z-axis. According to the invention, the main axis of each of the three motors encloses an angle of substantially 120.degree. with the main axis of each of the two other motors. In this manner, the points of application on the second part of the driving forces of the three motors are uniformly distributed relative to the second part, so that the driving forces can be uniformly transmitted to the object table by means of a relatively light and simple stiffening structure of the second part. In a particular embodiment of the positioning device, the main axes of the three motors are mutually arranged in a star-shaped configuration. In a second embodiment the main axes of the three motors are mutually arranged in a triangular configuration. The positioning device is used in a lithographic projection apparatus according to the invention for displacing a substrate table of the lithographic device relative to a focusing unit of the lithographic projection apparatus.
摘要:
A positioning device with a base and a displaceable unit which is displaceable relative to the base parallel to an X-direction and parallel to a Y-direction by means of an X-actuator and a Y-actuator. The X-actuator and the Y-actuator each have a first part which is coupled to the displaceable unit, seen parallel to the X-direction and Y-direction, respectively, and a second part which is coupled to a common balancing unit, seen parallel to the X-direction and the Y-direction, respectively, which balancing unit is displaceably guided parallel to the X-direction and to the Y-direction along a guide which extends parallel to the X-direction and the Y-direction and which is fastened to the base. During operation the first parts of the X-actuator and the Y-actuator exert on the second parts reaction forces which are directed parallel to the X-direction and to the Y-direction, respectively, whereby the common balancing unit is displaced parallel to the X-direction and the Y-direction, respectively. It is prevented thereby that the reaction forces are transmitted into the base, so that mechanical vibrations of the base are reduced. In a special embodiment, the balancing unit comprises a support body which comprises a surface which extends parallel to the X-direction and the Y-direction and along which the displaceable unit is guided. The positioning device can be used for the displacement and positioning of a substrate holder in a lithographic device for the manufacture of semiconductor substrates.
摘要:
A transmission mechanism for converting a rotary movement into a translatory movement includes an internal and an external coupling member which have cooperating double thread systems made of a magnetizable material. The external coupling member includes a series of permanent magnets which are polarized in an axial direction and are provided at regular intervals between the individual threads of the thread system so that the individual threads each form a common pole shoe for the permanent magnets providing a maximum magnetic flux density along the portion of the thread system containing the permanent magnets. The presence of a non-magnetizable material between the threads provides that the mutually facing walls of the coupling members are smooth, and a static gas bearing can be applied between these walls. A suitable application of the transmission mechanism is in a positioning device which in turn is eminently suitable for use in an optical lithographic device for the manufacture of semiconductor substrates.