Abstract:
Methods are provided for improving the yield of aromatics during conversion of oxygenate feeds. An oxygenate feed can contain a mixture of oxygenate compounds, including one or more compounds with a hydrogen index of less than 2, so that an effective hydrogen index of the mixture of oxygenates is between about 1.4 and 1.9. Methods are also provided for converting a mixture of oxygenates with an effective hydrogen index greater than about 1 with a pyrolysis oil co-feed. The difficulties in co-processing a pyrolysis oil can be reduced or minimized by staging the introduction of pyrolysis oil into a reaction system. This can allow varying mixtures of pyrolysis oil and methanol, or another oxygenate feed, to be introduced into a reaction system at various feed entry points.
Abstract:
Methods are provided for improving the yield of aromatics during conversion of oxygenate feeds. An oxygenate feed can contain a mixture of oxygenate compounds, including one or more compounds with a hydrogen index of less than 2, so that an effective hydrogen index of the mixture of oxygenates is between about 1.4 and 1.9. Methods are also provided for converting a mixture of oxygenates with an effective hydrogen index greater than about 1 with a pyrolysis oil co-feed. The difficulties in co-processing a pyrolysis oil can be reduced or minimized by staging the introduction of pyrolysis oil into a reaction system. This can allow varying mixtures of pyrolysis oil and methanol, or another oxygenate feed, to be introduced into a reaction system at various feed entry points.
Abstract:
Methods are provided for improving the yield of aromatics during conversion of oxygenate feeds. An oxygenate feed can contain a mixture of oxygenate compounds, including one or more compounds with a hydrogen index of less than 2, so that an effective hydrogen index of the mixture of oxygenates is between about 1.4 and 1.9. Methods are also provided for converting a mixture of oxygenates with an effective hydrogen index greater than about 1 with a pyrolysis oil co-feed. The difficulties in co-processing a pyrolysis oil can be reduced or minimized by staging the introduction of pyrolysis oil into a reaction system. This can allow varying mixtures of pyrolysis oil and methanol, or another oxygenate feed, to be introduced into a reaction system at various feed entry points.
Abstract:
Methods are provided for forming aromatic compounds from a highly unsaturated aliphatic feeds optionally in combination with methanol. The method can include dehydrogenating a feed containing at least about 50 vol % C1-C4 alkanes under dehydrogenation conditions to form a dehydrogenation effluent containing at least about 25 vol % alkynes. Alternatively, other sources of alkyne-containing feeds can be used. At least a portion of the alkyne-containing feed can then be converted under effective conversion conditions to form a conversion effluent comprising a hydrocarbon product containing aromatic compounds.
Abstract:
Methods are provided for improving the yield of aromatics during conversion of oxygenate feeds. An oxygenate feed can contain a mixture of oxygenate compounds, including one or more compounds with a hydrogen index of less than 2, so that an effective hydrogen index of the mixture of oxygenates is between about 1.4 and 1.9. Methods are also provided for converting a mixture of oxygenates with an effective hydrogen index greater than about 1 with a pyrolysis oil co-feed. The difficulties in co-processing a pyrolysis oil can be reduced or minimized by staging the introduction of pyrolysis oil into a reaction system. This can allow varying mixtures of pyrolysis oil and methanol, or another oxygenate feed, to be introduced into a reaction system at various feed entry points.
Abstract:
Methods are provided for forming aromatic compounds from a highly unsaturated aliphatic feeds optionally in combination with methanol. The method can include dehydrogenating a feed containing at least about 50 vol % C1-C4 alkanes under dehydrogenation conditions to form a dehydrogenation effluent containing at least about 25 vol % alkynes. Alternatively, other sources of alkyne-containing feeds can be used. At least a portion of the alkyne-containing feed can then be converted under effective conversion conditions to form a conversion effluent comprising a hydrocarbon product containing aromatic compounds.
Abstract:
This invention relates to a process and system for cracking hydrocarbon feedstock containing vacuum resid comprising: (a) subjecting a vacuum resid to a first thermal conversion in a thermal conversion reactor (such as delayed coker, fluid coker, Flexicoker™, visbreaker and catalytic hydrovisbreaker) where at least 30 wt % of the vacuum resid is converted to material boiling below 1050° F. (566° C.); (b) introducing said thermally converted resid to a vapor/liquid separator, said separator being integrated into a steam cracking furnace, to form a vapor phase and liquid phase; (c) passing said vapor phase to the radiant furnace in said steam cracking furnace; and (d) recovering at least 30 wt % olefins from the material exiting the radiant furnace (based upon the weight of the total hydrocarbon material exiting the radiant furnace).
Abstract:
The invention concerns integration of hydroprocessing and steam cracking. A feed comprising crude or resid-containing fraction thereof is treated by hydroprocessing and visbreaking and then passed to a steam cracker to obtain a product comprising olefins.