Abstract:
An air-conditioning system includes first and second PCM vessels, a heat recovery circuit, and a conduit and valve system. The heat recover circuit includes a third PCM vessel. The conduit and valve system operably couples i.) a first heat exchanger to the first PCM vessel and a radiator, ii.) a second heat exchanger to a core and the second PCM vessel, and iii.) the heat recovery circuit to the first heat exchanger.
Abstract:
An air-conditioning system and method of climate control for a fuel cell vehicle are provided herein. The system and method include a vacuum enclosure having an adsorber and an evaporator/condenser assembly. A conduit and valve system operates the air-conditioning system in two modes of operation to provide uninterrupted cooling to a passenger cabin, among other things. In one mode of operation, the adsorber is regenerated using waste heat from a fuel cell stack.
Abstract:
Systems and methods for operating an engine that includes an exhaust gas heat recovery system are described. The system may reduce engine warm-up time and increase an amount of time an engine of a hybrid vehicle is deactivated while the hybrid vehicle is powered by a motor. In one example, a phase change material selectively stores and releases exhaust gas energy from and engine to improve vehicle operation.
Abstract:
Methods and system for operating a thermal storage device of a vehicle system are provided. In one example, a method comprises estimating a temperature of a thermal battery after the battery and coolant included therein have reached thermal equilibrium, and determining a state of charge of the battery based on the estimated temperature and one or more chemical properties of two phase change materials included within the battery. Specifically, the thermal battery may include two phase change materials with different melting points for providing thermal energy to warm coolant in a vehicle coolant system.
Abstract:
A vehicle climate control system includes a thermal-adsorption heat pump driven by engine exhaust heat, the heat pump including two adsorbers asynchronously switching between adsorbing and desorbing modes, each adsorber coupled with a corresponding antifreeze tank via a plurality of refrigerant-containing wick chambers. Cold heat transfer fluid (HTF) flows through the adsorber during the adsorbing mode which causes evaporation of refrigerant from the wick chambers, thereby cooling antifreeze, whereas hot HTF flows through the adsorber during the desorbing mode which causes condensation of refrigerant at the wick chambers, thereby heating antifreeze. In this way, the thermal-adsorption heat pump may condition cabin air independent of engine coolant and without exerting a load on the engine.
Abstract:
Methods and systems are provided for a phase change material (PCM) integrated radiator. In one example, a method may include adjusting a radiator control valve into a first position to flow coolant only through a first zone of a radiator containing phase change material (PCM) and not through a second zone of the radiator not containing phase change material. The method may further include adjusting the radiator control valve into a second position to flow coolant only through the second zone of the radiator and not the first zone.
Abstract:
Systems and methods for operating an engine that includes an exhaust gas heat recovery system are described. The system may reduce engine warm-up time and increase an amount of time an engine of a hybrid vehicle is deactivated while the hybrid vehicle is powered by a motor. In one example, a phase change material selectively stores and releases exhaust gas energy from and engine to improve vehicle operation.
Abstract:
Methods and systems are provided for regulating the temperature of rear axle lubrication oil. In one example, a rear axle coolant system may include a coolant loop with a plurality of valves and sensors, regulating the coolant flow in heat exchange relationship with an exhaust gas heat recovery and storage system to deliver warm coolant to a rear axle heat exchanger to warm the rear axle lubrication oil. The method may regulate the components of the rear axle coolant system through a controller, receiving sensor input from the components of the coolant system.
Abstract:
An air-conditioning system is provided for a motor vehicle. That system includes a vacuum enclosure having a refrigerant, a first section and a second section. The system further includes a radiator, a core and a phase change material vessel downstream from the core. A conduit and valve system operate the air-conditioning system in two modes of operation.
Abstract:
A differential is provided. The differential includes a housing that has a sump, an input shaft, a ring gear, a carrier that is affixed to the ring gear, and a diverter. The sump is configured to collect lubricating fluid. The ring gear is configured to transfer lubricating fluid out of the sump. The diverter is configured to direct the lubricating fluid to the input shaft and carrier.