Abstract:
An object of the invention is to provide: a photoelectric conversion material which has excellent deposition stability such that when the photoelectric conversion material is used in a photoelectric conversion element, the change in the performance of the element due to variations in the concentration of the photoelectric conversion material is small; a photoelectric conversion element using the photoelectric conversion material; and an optical sensor and an imaging element including the photoelectric conversion element. The photoelectric conversion material of the invention is a compound (A) expressed by the following Formula (1).
Abstract:
An object of the present invention is to provide a film having a plated-layer precursor layer which is capable of forming a metal layer having excellent roll-to-roll productivity and excellent adhesiveness to a substrate. Another object of the present invention is to provide a film having a patterned plated layer as well as an electroconductive film and a touch panel using the same.The film having a plated-layer precursor layer of the present invention is a film having a plated-layer precursor layer including a substrate, and an undercoat and a plated-layer precursor layer disposed on the substrate in this order from the substrate side, in which the undercoat has a hardness on the surface thereof of 10 N/mm2 or less and a friction coefficient with release paper of 5 or less.
Abstract:
The present invention provides a photoelectric conversion element having a photoelectric conversion film which exhibits excellent photoelectric conversion efficiency and responsiveness, an imaging device, an optical sensor, and a method of using a photoelectric conversion element. In the photoelectric conversion element of the invention, a photoelectric conversion material contains at least one selected from the group consisting of a compound represented by General formula (1), a compound represented by General formula (2), and a compound represented by General formula (3).
Abstract:
The present invention provides a photoelectric conversion element having a photoelectric conversion film which exhibits excellent photoelectric conversion efficiency and responsiveness, an imaging device, an optical sensor, and a method of using a photoelectric conversion element. In the photoelectric conversion element of the invention, a photoelectric conversion material contains at least one selected from the group consisting of a compound represented by General formula (1), a compound represented by General formula (2), and a compound represented by General formula (3).
Abstract:
The present invention provides a method for producing a metal wiring-containing laminate which is capable of efficiently producing a metal wiring-containing laminate having a fine metal wiring with low resistance; as well as a metal wiring-containing laminate and a substrate with a plated layer. The method for producing a metal wiring-containing laminate of the present invention includes: a step of forming a photosensitive layer having a functional group capable of interacting with a plating catalyst or a precursor thereof on a substrate; a step of exposing the photosensitive layer in a patternwise manner and subjecting the exposed photosensitive layer to a development treatment to form a plated layer having a groove portion; a step of applying a plating catalyst or a precursor thereof to the plated layer; and a step of subjecting the plated layer, to which the plating catalyst or the precursor thereof has been applied, to a plating treatment to form a metal wiring so as to fill the groove portion.
Abstract:
An object of the present invention is to provide a photoelectric conversion element having a photoelectric conversion film which exhibits heat resistance, a high photoelectric conversion efficiency, a low level of dark currents, rapid response, and sensitivity characteristics to red and can be produced by a vapor deposition processing that is continuously performed under a high-temperature condition. The photoelectric conversion element of the present invention is a photoelectric conversion element in which a conductive film, a photoelectric conversion film containing a photoelectric conversion material, and a transparent conductive film are laminated on one another in this order, wherein the photoelectric conversion material includes a compound represented by Formula (1).
Abstract:
An electromagnetic shielding member (11) includes a substrate (12) having a three-dimensional shape, and a conductive layer member (13) that is disposed on the substrate (12) and reflects an electromagnetic wave in a wavelength-selective manner.
Abstract:
A photoelectric conversion element exhibiting excellent responsiveness and high photoelectric conversion efficiency, a method of using the photoelectric conversion element, and an optical sensor and an image sensor including the photoelectric conversion element are provided. The photoelectric conversion element includes a conductive film, a photoelectric conversion film containing a photoelectric conversion material and a transparent conductive film. The conductive film, the photoelectric conversion film and the transparent conductive film are formed in this order. The photoelectric conversion material contains a compound (A) represented by formula (1):
Abstract:
A wafer for forming an imaging element has a test pattern and a plurality of imaging element units. The wafer has an imaging region which includes a great number of photoelectric conversion pixels, an imaging element units and a test pattern. The test pattern includes a testing organic photoelectric conversion film and a testing counter electrode having the same configuration and formed at the same time as the organic photoelectric conversion film and a counter electrode, respectively of the photoelectric conversion pixels. A first testing terminal is electrically connected to the undersurface side of the testing organic photoelectric conversion film, and a second testing terminal is electrically connected to the testing counter electrode. A protective film is formed over the entire semiconductor wafer so as to cover the imaging region and the test pattern, and is then partially removed so that a part of each testing terminal is exposed.
Abstract:
An object of the present invention is to provide a laminated sheet for a metal-clad laminate and a method of manufacturing the same, the laminated sheet including: a substrate that includes a liquid crystal polymer or a fluoropolymer; and an adhesive layer, in which adhesiveness with a metal layer formed on the adhesive layer is excellent. Another object of the present invention is to provide a metal-clad laminate and a method of manufacturing the same. A laminated sheet for a metal-clad laminate includes: a substrate that includes a liquid crystal polymer or a fluoropolymer; an inorganic oxide layer; and an adhesive layer, in which the substrate, the inorganic oxide layer, and the adhesive layer are laminated in this order.