Abstract:
Only irregularities on the body tissue, such as a superficial microstructure or a hypertrophy, are made clear. A blue signal B, a green signal G, and a red signal R are obtained by imaging a subject illuminated with white light W using a color CCD 44. Based on these signals B, G, and R, a brightness signal I ((B+G+R)/3) showing the average brightness of the subject is generated. A pixel region exceeding the fixed threshold value Th1 of the brightness signal I is extracted as a superficial microstructure P, such as a pit pattern. A superficial microstructure image 70 obtained by extracting the superficial microstructure P is displayed on a monitor 14.
Abstract translation:仅清楚身体组织上的不规则,如表面微结构或肥大。 通过使用彩色CCD44对用白光W照明的被摄体进行拍摄来获得蓝色信号B,绿色信号G和红色信号R.基于这些信号B,G和R,将亮度信号I((B + G + R)/ 3)。 提取超过亮度信号I的固定阈值Th1的像素区域作为表面微结构P,例如凹坑图案。 通过提取表面微结构P获得的表面微结构图像70显示在监视器14上。
Abstract:
A fluorescent type of green light source of a semiconductor in a light source apparatus for an endoscope includes a blue excitation light source device and green emitting phosphor. The blue excitation light source device emits blue excitation light. The green emitting phosphor is excited by the blue excitation light, and emits green fluorescence. A dichroic filter in a dichroic mirror cuts off the blue excitation light from an emission spectrum of mixed light of the blue excitation light and green fluorescence from the fluorescent type of green light source. Thus, illumination light with the emission spectrum of a target can be stably supplied without influence of the blue excitation light to a light amount of blue light from a blue light source of a semiconductor.
Abstract:
A light source apparatus outputs light for an endoscope apparatus. A blue LED emits blue light with a peak wavelength equal to or longer than 450 nm. A wavelength cut-off filter is disposed downstream of the blue LED, for cutting off a component in the blue light having a wavelength equal to or longer than the peak wavelength. Preferably, the wavelength cut-off filter cuts off a component of a wavelength equal to or longer than a reference wavelength in a wavelength range equal to or longer than the peak wavelength. A mode changer changes over an enhancement mode and a normal mode, the enhancement mode is set for enhancing and imaging a surface blood vessel of the object by use of the wavelength cut-off filter, the normal mode is set for imaging the object by disabling a function of the wavelength cut-off filter.
Abstract:
A band limiter comprises an optical filter, which has first and second filter sections, and a filter moving mechanism for moving the optical filter to place the first or second filter section in a light path of blue light. A passband where transmittance of the first filter section is greater than or equal to half a peak value thereof is defined as a first transmission band. The first transmission band includes a peak wavelength, at which an absorption coefficient of hemoglobin is at its peak. A passband where transmittance of the second filter section is greater than or equal to half a peak value thereof is defined as a second transmission band. The second transmission band does not include an isosbestic wavelength (in the order of 450 nm), at which an absorption coefficient of oxyhemoglobin equals or crosses an absorption coefficient of deoxyhemoglobin.
Abstract:
A fluorescent type of green light source of a semiconductor in a light source apparatus for an endoscope includes a blue excitation light source device and green emitting phosphor. The blue excitation light source device emits blue excitation light. The green emitting phosphor is excited by the blue excitation light, and emits green fluorescence. A dichroic filter in a dichroic mirror cuts off the blue excitation light from an emission spectrum of mixed light of the blue excitation light and green fluorescence from the fluorescent type of green light source. Thus, illumination light with the emission spectrum of a target can be stably supplied without influence of the blue excitation light to a light amount of blue light from a blue light source of a semiconductor.
Abstract:
There are provided a light source device, which is more compact and inexpensive than a known light source device, and an endoscope system having a compact and inexpensive light source device. In a light source device, a light source unit includes a first light source that emits blue light, a second light source that emits broadband green light including not only a green component but also a red component, and an optical filter that adjusts the amount of broadband green light for each wavelength. The optical filter has a characteristic in which the reflectance of the green component is smaller than the reflectance of the red component in the case of reflecting the broadband green light or a characteristic in which the transmittance of the green component is smaller than the transmittance of the red component in the case of transmitting the broadband green light.
Abstract:
A band limiter comprises an optical filter, which has first and second filter sections, and a filter moving mechanism for moving the optical filter. The first filter section reduces intensity of blue light, which is emitted from a B-LED, in a wavelength range of greater than or equal to a peak wavelength of the blue light to generate first blue light. The second filter section reduces intensity of the blue light in a wavelength range of less than or equal to the peak wavelength of the blue light to generate second blue light. A light source controller places the first filter section in a light path of the blue light in a normal mode to generate the first blue light, and places the second filter section in the light path of the blue light in an oxygen saturation mode to generate the second blue light.
Abstract:
An endoscope system includes a light source unit, a band limiting unit, a light source control unit, an imaging sensor, an imaging control unit, and an oxygen saturation image generation unit. The light source unit includes a V-LED that emits violet light, a B-LED that emits blue light, a G-LED that emits green light, and an R-LED that emits red light. The band limiting unit generates measurement light having a specific wavelength band for measuring the oxygen saturation from the blue light. The light source control unit switches the control of the light source unit between a first light emission mode, in which the observation target is irradiated with the violet light, the measurement light, the green light, and the red light, and a second light emission mode, in which the observation target is irradiated with the measurement light.
Abstract:
A blue signal B, a green signal G, and a red signal R are obtained by imagining a subject illuminated with white light W using a color CCD 44. Based on these signals B, G, and R, a normal light image in which a wavelength component of a visible light region is included is generated. Based on the signals B, G, and R, a brightness signal I ((B+G+R)/3) showing the average brightness of the subject is generated. A pixel region exceeding the fixed threshold value Th1 of the brightness signal I is extracted as a superficial microstructure P, such as a pit pattern. A microstructure enhancement image 72 is generated by combining the normal light image with a superficial microstructure image 70 obtained by extracting the superficial microstructure P. The generated microstructure and blood vessel enhancement image 72 is displayed on a monitor 14.
Abstract:
An endoscope system includes an endoscope and a processor device. The processor device functions as an abnormality detection unit, an abnormality information generation unit, and an abnormality information management unit. The abnormality detection unit detects an abnormality of the endoscope by using information detected by an image sensor of the endoscope. The abnormality information generation unit generates abnormality information including sensor information detected by the image sensor at a time of abnormality detection and in a predetermined period before and after the abnormality detection and operating information of the endoscope. The abnormality information management unit stores the abnormality information in a memory.