Abstract:
A dual frequency ultrasound transducer includes a high frequency ultrasound array and a low frequency transducer positioned behind or proximal to the high frequency ultrasound array. In one embodiment, a dampening material is positioned between a rear surface of the high frequency array and the a front surface of the low frequency array. The dampening preferably is high absorbing of signals at the frequency of the high frequency array but passes signals at the frequency of the low frequency transducer with little attenuation. In additional, or alternatively, the low frequency can angled with respect to the plane of the high frequency transducer to reduce inter-stack multipath reflections. Beamforming delays compensate for the differences in physical distances between the elements of the low frequency transducer and the plane of the high frequency transducer.
Abstract:
A system for acquiring an ultrasound signal comprises a signal processing unit adapted for acquiring a received ultrasound signal from an ultrasound transducer having a plurality of elements. The system is adapted to receive ultrasound signals having a frequency of at least 20 megahertz (MHz) with a transducer having a field of view of at least 5.0 millimeters (mm) at a frame rate of at least 20 frames per second (fps). The signal processing can further produce an ultrasound image from the acquired ultrasound signal. The transducer can be a linear array transducer, a phased array transducer, a two-dimensional (2-D) array transducer, or a curved array transducer.
Abstract:
The disclosed technology features methods for the manufacture of electrical components such as ultrasound transducers. In particular, the disclosed technology provides methods of patterning electrodes, e.g. in the connection of an ultrasound transducer to an electrical circuit; methods of depositing metal on surfaces; and methods of making integrated matching layers for an ultrasound transducer. The disclosed technology also features ultrasound transducers produced by the methods described herein.
Abstract:
Disclosed is a medical device that includes a phased array ultrasound transducer. The transducer includes a number of transducer elements that are electrically coupled to corresponding electrical conductors. In one embodiment, the conductors are included in a flex circuit and engage corresponding transducer elements though a conductive surface formed on outwardly extending ribs of a frame that holds the ultrasound array. In one embodiment, the phased array is forward facing in the medical device and has an element pitch of 0.75 lambda or less and more preferably 0.6 lambda or less. In one embodiment, the transducer is rotatable over an angle of +/−90 degrees to provide a 360 degree view of tissue surrounding the distal end of the device.
Abstract:
The disclosed technology features methods for the manufacture of electrical components such as ultrasound transducers. In particular, the disclosed technology provides methods of patterning electrodes, e.g. in the connection of an ultrasound transducer to an electrical circuit; methods of depositing metal on surfaces; and methods of making integrated matching layers for an ultrasound transducer. The disclosed technology also features ultrasound transducers produced by the methods described herein.
Abstract:
The disclosed technology features methods for the manufacture of electrical components such as ultrasound transducers. In particular, the disclosed technology provides methods of patterning electrodes, e.g. in the connection of an ultrasound transducer to an electrical circuit; methods of depositing metal on surfaces; and methods of making integrated matching layers for an ultrasound transducer. The disclosed technology also features ultrasound transducers produced by the methods described herein.
Abstract:
A dual frequency ultrasound transducer includes a high frequency ultrasound array and a low frequency transducer positioned behind or proximal to the high frequency ultrasound array. In one embodiment, a dampening material is positioned between a rear surface of the high frequency array and the a front surface of the low frequency array. The dampening preferably is high absorbing of signals at the frequency of the high frequency array but passes signals at the frequency of the low frequency transducer with little attenuation. In additional, or alternatively, the low frequency can angled with respect to the plane of the high frequency transducer to reduce inter-stack multipath reflections. Beamforming delays compensate for the differences in physical distances between the elements of the low frequency transducer and the plane of the high frequency transducer.
Abstract:
In one aspect, matching layers for an ultrasonic transducer stack having a matching layer comprising a matrix material loaded with a plurality of micron-sized and nano-sized particles. In another aspect, the matrix material is loaded with a plurality of heavy and light particles. In another aspect, an ultrasound transducer stack comprises a piezoelectric layer and at least one matching layer. In one aspect, the matching layer comprises a composite material comprising a matrix material loaded with a plurality of micron-sized and nano-sized particles. In a further aspect, the composite material can also comprise a matrix material loaded with a plurality of heavy and light particles. In a further aspect, a matching layer can also comprise cyanoacrylate.
Abstract:
An ultrasonic imaging system comprises a processing system and an ultrasound imaging probe that is configured to transmit ultrasound energy into a selected portion of a subject and to receive echoes therefrom and to transmit data signals representative thereof to the processing system. The system further comprises a blood pressure sensor that is configured to measure the blood pressure of the subject and to transmit data signals representative thereof to the processing system. The processing system can processes the received ultrasound data signals to generate an ultrasound image and the received blood pressure data signals to generate a blood pressure trace. The processing system can also display the ultrasound image and blood pressure trace in a display image in which portions of the ultrasound image are displayed in temporal synchrony with portions of the blood pressure trace.
Abstract:
The invention features methods for the manufacture of electrical components such as ultrasound transducers. In particular, the inventions provides methods of patterning electrodes, e.g., in the connection of an ultrasound transducer to an electrical circuit; methods of depositing metal on surfaces; and methods of making integrated matching layer for an ultrasound transducer. The invention also features ultrasound transducers produced by the methods described herein.