摘要:
Fibers and articles formed therefrom are described herein. The fibers generally include a first polymer including a first propylene based impact copolymer and a second propylene based polymer.
摘要:
Provided is polyolefin-based compound, resin, mixture, or combinations thereof, providing products having reduced coefficient of friction, comprising: A) polyolefin other than syndiotactic poly-&agr;-olefin; B) about 0.1% to about 70% syndiotactic poly-&agr;-olefin; and C) about 0.01% to about 5% of: slip agent, anti-block agent, or combinations thereof; as well as process for producing the same.
摘要:
Polypropylene heterophasic copolymers are produced having increased impact strength through the use of controlled rheology techniques by the addition of a peroxide at conditions which increase the deactivation or half life of the peroxide. The increased half life slows down the vis-breaking process and allows better dispersion of rubber particles within the polymer. In this way, copolymers having a high melt flow can be prepared while obtaining high impact strength and lower stiffness values, without the need for additional elastomeric modifiers.
摘要:
A process for the production of biaxially-oriented polypropylene film involving the provision of a polypropylene polymer produced by the polymerization of propylene in the presence of a metallocene catalyst characterized by a bridged racemic bis(indenyl) ligand substituted at the proximal position. The polypropylene contains 0.5 to 2% 2,1 insertions and has an isotacticity of at least 96% meso pentads and at least 99% meso diads. The film is formed by stressing the polymer produced from a slot die in the machine direction at a stretch ratio of about 5 or 6 and in the transverse direction at a stretch ratio of about 8 or 9 to produce a biaxially-oriented film having a non-uniform melt temperature of a peak value of less than 160° C. The polypropylene polymer has meltflow index of less than 5 grams per 10 minutes and has an average molecular weight within the range of 100,000-400,000 grams per mole. The film, when configured having a thickness of 18 microns, is characterized by a machine direction secant modulus of at least 1400 MPa, a transverse direction secant modulus of at least 2200 MPa, a kinetic film-to-film co-efficient of friction of no more than 0.5, and permeabilities to water and oxygen of no more than 2.6 g/m2/d and 2400 c3/m2/d, respectively. The film is further characterized by shrinkage factors of at least 8% in a transverse dimension and at least 16% in a transverse direction when heated to a temperature of at least 140° C.
摘要:
The present invention relates to improved processability of polyolefin films through the addition to the basic isotactic polypropylene (iPP) polymer of a syndiotactic polypropylene (sPP) in an amount within the range of about 2 to 10 weight percent and of a resin or rosin modifier in an amount within the range of 1 to 30 weight percent. Preferably, the composition could contain syndiotactic propylene in an amount within the range of about 2 to 5 weight percent. Preferably, about 3 weight percent of syndiotactic propylene is present in the polyolefin composition. The resin or rosin modifier could, preferably, be present in an amount within the range of 5 to 10 weight percent. Preferably, the composition should contain about 10 weight percent of the modifier. The present invention encompasses both the resulting polyolefin films and the process for producing such films. The improved processability of the film includes fewer webs breaks and drawability at higher line speeds, resulting in fewer shut downs of the processing line and a decrease in manufacturing time. These improvements are measured in terms of variable machine direction orientation draw ratios and transverse direction orientation oven temperatures.
摘要:
Bicomponent fibers, methods of forming bicomponent fibers and articles formed from bicomponent fibers are described herein. The bicomponent fibers generally include a sheath component and a core component, wherein the sheath component consists essentially of a first metallocene polypropylene and the core component consists essentially of a second metallocene polypropylene.
摘要:
Bicomponent fibers, methods of forming bicomponent fibers and articles formed from bicomponent fibers are described herein. Tile bicomponent fibers generally include a sheath component and a core component, wherein the sheath component consists essentially of a first metallocene polypropylene and the core component consists essentially of a second metallocene polypropylene.
摘要:
The present invention relates to the improvement of metal bonding strength in polypropylene films through the addition of ethylene in a mini-random ethylene-propylene copolymer in an amount of no more than about 1 weight percent, more preferably no more than about 0.7 weight percent, and most preferably between about 0.3 weight percent and about 0.5 weight percent, or even amounts between about 0.05 weight percent and about 0.2 weight percent. The invention allows the improvement of metal bond strength in metallizable films. The invention encompasses both the resulting films with enhanced metal bond strength and the process for producing such films. In the preferred embodiment, the proposed mini-random copolymer is formed into a film layer used in place of a propylene homopolymer layer, providing improved bonding properties over a simple polypropylene homopolymer, while maintaining at acceptable levels the physical and optical characteristics of a film layer made from a propylene homopolymer, such as stiffness.
摘要:
Bicomponent fibers, methods of forming bicomponent fibers and articles formed from bicomponent fibers, are described herein. The bicomponent fibers generally include a sheath component and a core component, wherein the sheath component consists essentially of a first metallocene polypropylene and the core component consists essentially of a second metallocene polypropylene.
摘要:
The present invention is for the improvement of inter-layer bonding strength in polypropylene films through the addition of ethylene as a mini-random copolymer in an amount of no more than about 1 weight percent, more preferably no more than about 0.7 weight percent, and most preferably between about 0.3 weight percent to about 0.5 weight percent or even amounts less than about 0.2 weight percent. The invention allows the improvement of inter-layer bond strength in multi-layer films resulting specifically in improved heat seal strength. The invention encompasses both the resulting films with enhanced heat seal strength and the process for producing such films. In the preferred embodiment, the proposed mini-random copolymer is formed into a film layer used in place of a propylene homopolymer layer, providing improved bonding properties over a film formed of polypropylene homopolymer, while maintaining at acceptable levels the physical and optical characteristics of a film layer made from a propylene homopolymer, such as stiffness.