摘要:
A highly efficient partial oxidation process with the production of power comprising the steps of producing fuel gas by the partial oxidation of hydrocarbonaceous fuel, cooling said fuel gas at high pressure by quenching in water to produce quenched fuel gas and by indirect heat exchange with BFW to maximize the production of IP and MP steam, cleaning said fuel gas, preheating scrubbing water comprising process condensate and make-up water by direct contact and direct heat exchange with clean fuel gas and using said preheated scrubbing water in the cleaning of said fuel gas, reducing the pressure of said cooled fuel gas stream prior to heating water for fuel gas saturation, cooling the process fuel gas stream in stages and condensing water for use as said scrubbing water, purifying the process fuel gas and saturating it with water, and burning said purified and saturated fuel gas in the combustor of a power-producing gas turbine along with saturated nitrogen to produce exhaust gas with a reduced NO.sub.x. In one embodiment, the hot exhaust gas from the gas turbine is passed through a HRSG to superheat the process steam. The superheated process steam is then used as part of the working fluid in an expansion turbine for the production of power. Steam condensate may be converted into high pressure (HP) steam and superheated in the HRSG. The power generation steam cycle is optimized to assist in maximizing the process steam which can be used most efficiently in the cycle.
摘要:
Cryogenic liquefied natural gas (LNG) is used as a source of refrigeration and methane in the production of dry sulfur-free, methane-enriched synthesis gas or fuel gas. Raw syngas is indirectly and directly contacted with cryogenic liquefied natural gas (LNG) and cooled thereby below the dew point. Water is thereby condensed out and separated from the process gas stream. Further, the liquid LNG vaporizes and increases the methane content of the dewatered synthesis gas. Cold liquid absorbent solvent contacts the dry CH.sub.4 -enriched synthesis gas in an absorption column and absorbs the acid gases e.g. H.sub.2 S and COS and optionally H.sub.2 S+COS+CO.sub.2. In a preferred embodiment, the rich solvent absorbent is regenerated in a stripping column and the released acid gases are sent to a Claus unit for the production of elemental sulfur. In a second embodiment, the regenerated lean liquid absorbent solvent may be mixed with the dry, purified synthesis gas leaving from the top of the absorption tower. This mixture is then directly and optionally indirectly contacted with additional cryogenic liquid LNG. The CH.sub.4 content of the synthesis or fuel gas is thereby increased to a value in the range of about 10 to 80 mole %. By means of a decanter, dry, sulfur-free methane-enriched syngas product is separated from liquid absorbent solvent. The liquid absorbent solvent is then recycled to the absorption column.
摘要:
Synthesis gas is produced by partial oxidation of hydrocarbon charge, a first portion being cooled by indirect heat exchange and scrubbed before being combined with the quenched second portion en route to particulate scrubbing, the combined gas scrubber overhead being characterized by a desired steam:dry gas ratio which is controlled by regulating the flow of the quenched second portion in accordance with the measured properties of the combined scrubber overhead gas.
摘要:
The present application discloses a fluidized catalytic cracking process wherein light cycle gas oil is stripped of heavy naphtha components employing reboiled light cycle gas oil as stripping vapor. Heavy naphtha vapors stripped from the light cycle gas oil are returned to the reaction vapor as primary stripping vapor. This process results in increased naphtha octanes, and reduced sour water production from a fluidized catalytic cracking unit.
摘要:
A combined system comprising an integrated gasifier combined cycle power generation system, an air separation unit which provides oxygen to a partial oxidation gasification unit gasifier and an inventory section which stores liquid oxygen or liquid air until it is needed.
摘要:
The hot effluent gas stream comprising H.sub.2 +CO and entrained molten slag and ash from the partial oxidation of an ash-containing heavy liquid hydrocarbonaceous fuel, an ash-containing solid carbonaceous fuel, or mixtures thereof is passed in succession through a radiant cooling zone, a metal gas transfer line with internal metal heat transfer surfaces, and a convection cooling zone. By maintaining the internal metal heat transfer surfaces of the gas transfer line where turbulent flow of gas stream occurs at a temperature in the range of about 150.degree. F. to below 700.degree. F. by noncontact heat exchange with a coolant, substantially no molten slag or ash sticks to the metal heat transfer surfaces on the inside of the gas transfer line. Simultaneously, where laminar flow fo the gas stream within the gas transfer line occurs, slag and ash entrained in the gas stream is prevented from sticking to the inside metal heat transfer surfaces of the gas transfer line by maintaining the temperature of said inside surfaces in the range of about 700.degree. F. to 1,200.degree. F. by noncontact heat exchange with a coolant.
摘要:
Synthesis gas is produced by partial oxidation of hydrocarbon charge, a first portion being cooled by indirect heat exchange and scrubbed before being combined with the quenched second portion en route to particulate scrubbing, the combined gas scrubber overhead being characterized by a desired steam:dry gas ratio which is controlled by regulating the flow of the quenched second portion in accordance with the measured properties of the combined scrubber overhead gas.
摘要:
Heavy hydrocarbon fuel containing high metal concentrations and all of the soot which is rich in metals that is produced in the system, are feedstocks in a partial oxidation process for the simultaneous continuous production of two streams of cleaned, raw synthesis gas having high and low H.sub.2 O/dry gas mole ratios, respectively. In the process, all of the stream of hot, raw synthesis gas containing entrained particulate carbon and ash that is produced in a first gas generator is quench cooled and scrubbed with water in a quench tank. Simultaneously, split streams of hot raw synthesis gas containing entrained particulate carbon and ash are produced in a second gas generator. One split gas stream is quench cooled and scrubbed with water in a quench tank while the other split gas stream is simultaneously cooled in a convection-type gas cooler and then scrubbed with water. All of the soot recovered from the quench cooling and scrubbing waters in the process is recycled to the first gas generator as a portion of the reactant fuel feed. Fouling and plugging of the tubes of a convection-type gas cooler associated with the second gas generator is prevented.
摘要:
Heavy hydrocarbon fuel containing high metal concentrations and all of the soot which is rich in metals that is produced in the system, are feedstocks in a partial oxidation process for the simultaneous continuous production of two streams of cleaned, raw synthesis gas having high and low H.sub.2 O/dry gas mole ratios, respectively. In the process, all of the stream of hot, raw synthesis gas containing entrained particulate carbon and ash that is produced in a first gas generator is quench cooled and scrubbed with water in a quench tank. Simultaneously, split streams of hot raw synthesis gas containing entrained particulate carbon and ash are produced in a second gas generator. One split gas stream is quench cooled and scrubbed with water in a quench tank while the other split gas stream is simultaneously cooled in a convection-type gas cooler and then scrubbed with water. All of the soot recovered from the quench cooling and scrubbing waters in the process is recycled to the first gas generator as a portion of the reactant fuel feed. Fouling and plugging of the tubes of a convection-type gas cooler associated with the second gas generator is prevented.
摘要:
The present invention is an integrated process and apparatus for supplying at least a portion of the reducing gas feedstock to a reduction reactor, such as a reactor for the direct reduction of iron, wherein the reducing gas contacts a feed material at a mean operating gas pressure and effects reduction of the feed material to provide a reduced product. The integrated process includes gasifying a hydrocarbonaceous feedstock in a partial oxidation reaction to produce a synthesis gas which comprises hydrogen, and carbon monoxide at a pressure substantially greater than the mean operating gas pressure in the reduction reactor. The synthesis gas is expanded to lower its pressure to substantially the mean operating gas pressure in the DRI reduction reactor to thereby form the reducing gas feedstock at the pressure conditions used for the DRI reaction. The lower pressure reducing gas mixture generated by the expansion is introduced into the DRI reactor as part or all of the reducing gas requirement for the direct reduction of iron.