Abstract:
A control system includes a communication device onboard a vehicle system approaching or entering an airflow restricted area along a route and one or more processors. The communication device configured to receive status messages that contain data parameters representative of ambient conditions within the airflow restricted area. The processors are configured to monitor the ambient conditions and determine different power output upper limits that a trail propulsion vehicle of the vehicle system can generate within the airflow restricted area based on the ambient conditions and different power outputs generated by a lead propulsion vehicle of the vehicle system. The processors further configured to communicate instructions to control the lead propulsion vehicle within the airflow restricted area to generate the power output of the different power outputs that results in the greatest total available power output of the vehicle system as the vehicle system travels within the airflow restricted area.
Abstract:
A method involves comparing a determined operating parameter of an engine, with a predefined operating parameter. The method further involves controlling a fuel source and an ignition source of the engine so as to operate at least one engine cylinder in a skip fire mode for at least one cycle of a crank shaft when the determined operating parameter is greater than the predefined operating parameter. The controlling involves transitioning the fuel source from a normal mode to the skip fire mode for the at least one cycle of the crank shaft either before transitioning the ignition source from the normal mode to the skip fire mode or when the ignition source is operated in the normal mode.
Abstract:
A traction loss warning system includes a warning controller configured to be disposed onboard a first vehicle and to determine a location on a route where a loss in traction of the first vehicle occurred and a vehicle controller configured to be disposed onboard a second vehicle, the vehicle controller configured to control movement of the second vehicle along the route. The warning controller also is configured to communicate a warning signal that notifies the second vehicle of the location where the loss in traction of the first vehicle occurred. The vehicle controller is configured to change the movement of second vehicle along the route during travel of the second vehicle over the location responsive to receiving the warning signal from the warning controller.
Abstract:
A control system includes a communication device onboard a vehicle system approaching or entering an airflow restricted area along a route and one or more processors. The communication device configured to receive status messages that contain data parameters representative of ambient conditions within the airflow restricted area. The processors are configured to monitor the ambient conditions and determine different power output upper limits that a trail propulsion vehicle of the vehicle system can generate within the airflow restricted area based on the ambient conditions and different power outputs generated by a lead propulsion vehicle of the vehicle system. The processors further configured to communicate instructions to control the lead propulsion vehicle within the airflow restricted area to generate the power output of the different power outputs that results in the greatest total available power output of the vehicle system as the vehicle system travels within the airflow restricted area.
Abstract:
A method for use with an internal combustion engine having both donor and non-donor cylinder groups includes: injecting a fuel in one, or both, of the groups; injecting a second fuel in both groups at a first substitution rate; recirculating an exhaust emission from the donor cylinder group to both groups; combusting a mixture of air, the first fuel, the second fuel and the exhaust emission in both cylinder groups; and lowering the substitution rate of the second fuel in one, or both, of the cylinder groups. Other methods of controlling an engine and a system are also disclosed.
Abstract:
A traction loss warning system includes a warning controller configured to be disposed onboard a first vehicle and to determine a location on a route where a loss in traction of the first vehicle occurred and a vehicle controller configured to be disposed onboard a second vehicle, the vehicle controller configured to control movement of the second vehicle along the route. The warning controller also is configured to communicate a warning signal that notifies the second vehicle of the location where the loss in traction of the first vehicle occurred. The vehicle controller is configured to change the movement of second vehicle along the route during travel of the second vehicle over the location responsive to receiving the warning signal from the warning controller.
Abstract:
A method of controlling an engine includes injecting a first fuel and a second fuel to each of a donor cylinder group and a non-donor cylinder group of the engine. The method also includes injecting a higher fraction of the first fuel into the donor cylinder group in comparison to the first fuel being injected into the non-donor cylinder group. Further, the method includes injecting a lower fraction of the second fuel into the donor cylinder group in comparison to the second fuel being injected into the non-donor cylinder group. Furthermore, the method includes recirculating an exhaust emission from the donor cylinder group to the non-donor cylinder group and the donor cylinder group and combusting a mixture of air, the first fuel, the second fuel and the exhaust emission from the donor cylinder group in both the donor cylinder group and the non-donor cylinder group.
Abstract:
Various methods for controlling EGR rate are disclosed. In one embodiment, a method comprises routing at least a portion of exhaust from a first exhaust manifold to an intake manifold, and not to atmosphere, the first exhaust manifold exclusively coupled to a first cylinder group. The method further includes routing exhaust from at least one additional exhaust manifold coupled to a corresponding at least one additional cylinder group to atmosphere, and during a first engine operating condition where an engine fuel demand is below a threshold demand, not injecting fuel to each of a subset of cylinders in the first cylinder group while injecting fuel to a subset of all cylinders coupled to the at least one additional exhaust manifold, where a number of cylinders of the subset of cylinders in the first cylinder group decreases in response to an increase in a target EGR rate.
Abstract:
A method involves comparing a determined operating parameter of an engine, with a predefined operating parameter. The method further involves controlling a fuel source and an ignition source of the engine so as to operate at least one engine cylinder in a skip fire mode for at least one cycle of a crank shaft when the determined operating parameter is greater than the predefined operating parameter. The controlling involves transitioning the fuel source from a normal mode to the skip fire mode for the at least one cycle of the crank shaft either before transitioning the ignition source from the normal mode to the skip fire mode or when the ignition source is operated in the normal mode.
Abstract:
A method for use with an internal combustion engine having both donor and non-donor cylinder groups includes: injecting a fuel in one, or both, of the groups; injecting a second fuel in both groups at a first substitution rate; recirculating an exhaust emission from the donor cylinder group to both groups; combusting a mixture of air, the first fuel, the second fuel and the exhaust emission in both cylinder groups; and lowering the substitution rate of the second fuel in one, or both, of the cylinder groups. Other methods of controlling an engine and a system are also disclosed.