Abstract:
An extreme ultraviolet light generating apparatus, may include: a chamber, in which extreme ultraviolet light is generated by plasma being generated in the interior thereof; a window provided in a wall of the chamber; a light source provided at the exterior of the chamber, configured to output illuminating light to the interior of the chamber via the window; a light sensor, configured to detect the illuminating light which is output to the interior of the chamber via the window; a shielding member having an opening that the illuminating light may pass through, that shields the window from emissions from the plasma, provided in the interior of the chamber; and a mirror provided along an optical path of the illuminating light in the interior of the chamber between the window and the shielding member, having a reflective surface that reflects the illuminating light, constituted by a surface of a metal layer.
Abstract:
An extreme ultraviolet light generation apparatus may include: a chamber including a plasma generation region to which a target is supplied, the target being turned into plasma so that extreme ultraviolet light is generated in the chamber; a target supply part configured to supply the target to the plasma generation region by outputting the target as a droplet into the chamber; a droplet detector configured to detect the droplet traveling from the target supply part to the plasma generation region; an imaging part configured to capture an image of an imaging region containing the plasma generation region in the chamber; and a controller configured to control an imaging timing at which the imaging part captures the image of the imaging region, based on a detection timing at which the droplet detector detects the droplet.
Abstract:
An apparatus for generating extreme ultraviolet light used with a laser apparatus and connected to an external device so as to supply the extreme ultraviolet light thereto includes a chamber provided with at least one inlet through which a laser beam is introduced into the chamber; a target supply unit provided on the chamber configured to supply a target material to a predetermined region inside the chamber; a discharge pump connected to the chamber; at least one optical element provided inside the chamber; an etching gas introduction, unit provided on the chamber through which an etching gas passes; and at least one temperature control mechanism for controlling a temperature of the at least one optical element.
Abstract:
An extreme ultraviolet light generation apparatus may be configured to generate extreme ultraviolet light by irradiating a target with a pulse laser beam outputted from a laser apparatus to generate plasma. The extreme ultraviolet light generation apparatus may include a chamber; a target supply device configured to supply a target to a plasma generation region inside the chamber; a target sensor located between the target supply device and the plasma generation region and configured to detect the target passing through a detection region; and a shield cover disposed between the detection region and the target supply device, having a through-hole that allows the target to pass through, and configured to reduce pressure waves that reach the target supply device from the plasma generation region.
Abstract:
An apparatus for generating extreme ultraviolet light used with a laser apparatus and connected to an external device so as to supply the extreme ultraviolet light thereto includes a chamber provided with at least one inlet through which a laser beam is introduced into the chamber; a target supply unit provided on the chamber configured to supply a target material to a predetermined region inside the chamber; a discharge pump connected to the chamber; at least one optical element provided inside the chamber; an etching gas introduction unit provided on the chamber through which an etching gas passes; and at least one temperature control mechanism for controlling a temperature of the at least one optical element.
Abstract:
An extreme ultraviolet light generation apparatus may include: a chamber; a target generation unit configured to output a target to a predetermined region inside the chamber; a focusing optical system configured to concentrate a pulse laser beam to the predetermined region; and a plurality of scattered light detectors each configured to detect scattered light from the target irradiated with the pulse laser beam. The extreme ultraviolet light generation apparatus may further include: an optical path changer configured to change an optical path of the pulse laser beam; and an optical path controller configured to control the optical path changer on a basis of results of detection by the plurality of scattered light detectors.
Abstract:
A target supply method uses a target supply device that includes a target generation unit having a nozzle, a pressure control unit having a pressure sensor and an actuator, an electrode, a potential application unit, and a timer; further, the method include raising the pressure inside the target generation unit to a setting pressure by the actuator, applying different potentials to the electrode and a target material from each other by the potential application unit in the case where it is detected that the pressure inside the target generation unit is halfway raised to the setting pressure, and applying a constant first potential to the target material and a first pulse voltage to the electrode by the potential application unit to extract the target material with electrostatic force in the case where it is detected that the pressure inside the target generation unit has been raised to the setting pressure.
Abstract:
A chamber apparatus used with an external apparatus having an obscuration region may include: a chamber in which extreme ultraviolet light is generated; a collector mirror provided in the chamber for collecting the extreme ultraviolet light; a support for securing the collector mirror to the chamber; and an output port provided to the chamber for allowing the extreme ultraviolet light collected by the collector mirror to be introduced therethrough into the external apparatus.
Abstract:
An extreme ultraviolet light generating apparatus may include a chamber including a window to allow first and second pulse laser beams to enter, a mirror to reflect the first pulse laser beam, a first actuator to control a position or a posture of the mirror, a beam combiner to cause optical paths of the first and second pulse laser beams to substantially coincide with each other, a reflective optical system to reflect the first and second pulse laser beams from the beam combiner, a second actuator to control a position or a posture of the reflective optical system, sensors each configured to output data for detecting a position of an optical path of the first pulse laser beam, and a controller to control the first actuator based on the data and control the second actuator based on a value related to control of the first actuator.
Abstract:
An extreme ultraviolet light generation device is to generate extreme ultraviolet light by irradiating a target with a pulse laser beam and thereby turning the target into plasma. The device may include a chamber, a magnet configured to form a magnetic field in the chamber, and an ion catcher including a collision unit disposed so that ions guided by the magnetic field collide with the collision unit.