Abstract:
The present disclosure generally provides for an e-fuse structure and corresponding method for fusing the same and monitoring material leakage. The e-fuse structure can include a metal dummy structure and an electrical fuse link substantially aligned with a portion of the metal dummy structure, wherein the metal dummy structure cools at least part of the electrical fuse link in response to an electric current passing through the electrical fuse link.
Abstract:
An integrated circuit product is disclosed that includes a resistor body and an e-fuse body positioned on a contact level dielectric material, wherein the resistor body and the e-fuse body are made of the same conductive material, a first plurality of conductive contact structures are coupled to the resistor body, conductive anode and cathode structures are conductively coupled to the e-fuse body, wherein the first plurality of conductive contact structures and the conductive anode and cathode structures are made of the same materials.
Abstract:
The present disclosure generally provides for an e-fuse structure and corresponding method for fusing the same and monitoring material leakage. The e-fuse structure can include a metal dummy structure and an electrical fuse link substantially aligned with a portion of the metal dummy structure, wherein the metal dummy structure cools at least part of the electrical fuse link in response to an electric current passing through the electrical fuse link.
Abstract:
An e-fuse device disclosed herein includes an anode and a cathode that are conductively coupled to the doped region formed in a substrate, wherein the anode includes a first metal silicide region positioned on the doped region and a first conductive metal-containing contact that is positioned above and coupled to the first metal silicide region, and the cathode includes a second metal silicide region positioned on the doped region and a second conductive metal-containing contact that is positioned above and conductively coupled to the second metal silicide region. A method disclosed herein includes forming a doped region in a substrate for an e-fuse device and performing at least one common process operation to form a first conductive structure on the doped region of the e-fuse device and a second conductive structure on a source/drain region of a transistor.
Abstract:
The present disclosure generally provides for an e-fuse structure and corresponding method for fusing the same and monitoring material leakage. The e-fuse structure can include a metal dummy structure and an electrical fuse link substantially aligned with a portion of the metal dummy structure, wherein the metal dummy structure cools at least part of the electrical fuse link in response to an electric current passing through the electrical fuse link.
Abstract:
An e-fuse device disclosed herein includes an anode and a cathode that are conductively coupled to the doped region formed in a substrate, wherein the anode includes a first metal silicide region positioned on the doped region and a first conductive metal-containing contact that is positioned above and coupled to the first metal silicide region, and the cathode includes a second metal silicide region positioned on the doped region and a second conductive metal-containing contact that is positioned above and conductively coupled to the second metal silicide region. A method disclosed herein includes forming a doped region in a substrate for an e-fuse device and performing at least one common process operation to form a first conductive structure on the doped region of the e-fuse device and a second conductive structure on a source/drain region of a transistor.
Abstract:
An integrated circuit product is disclosed that includes a resistor body and an e-fuse body positioned on a contact level dielectric material, wherein the resistor body and the e-fuse body are made of the same conductive material, a first plurality of conductive contact structures are coupled to the resistor body, conductive anode and cathode structures are conductively coupled to the e-fuse body, wherein the first plurality of conductive contact structures and the conductive anode and cathode structures are made of the same materials.
Abstract:
One illustrative e-fuse device disclosed herein includes first and second conductive structures, a first electrically conductive heat cage element that is conductively coupled to the first conductive structure, wherein the first heat cage element is adapted to carry an electrical current, a second electrically conductive heat cage element that is conductively coupled to the second conductive structure, wherein the second heat cage element is adapted to carry the electrical current, and a programmable, electrically conductive e-fuse element that is conductively coupled to each of the first and second electrically conductive heat cage elements and adapted to carry the electrical current, wherein the e-fuse element is positioned adjacent to each of the first and second electrically conductive heat cage elements.
Abstract:
An electronic fuse includes a body, an anode coupled to the body, and a cathode coupled to the body. Each of the anode and the cathode includes a first line contacting the body. The first line is discontinuous along its length and includes a first portion and a second portion with a space therebetween. A second line is disposed above the first line and a plurality of vias couple the first and second lines. The first portion of the first line is coupled to a first subset of the plurality of vias and the second portion of the first line is coupled to a second subset of the vias.
Abstract:
An integrated circuit product is disclosed that includes a resistor body and an e-fuse body positioned on a contact level dielectric material, wherein the resistor body and the e-fuse body are made of the same conductive material, a first plurality of conductive contact structures are coupled to the resistor body, conductive anode and cathode structures are conductively coupled to the e-fuse body, wherein the first plurality of conductive contact structures and the conductive anode and cathode structures are made of the same materials.