Abstract:
Methods of forming a T-shaped SBD using a single-mask process flow are disclosed. Embodiments include providing a substrate having STI regions; forming a hard mask layer over the substrate and the STI regions, the hard mask having an opening laterally separated from the STI regions; forming a recess in the substrate through the opening, the recess having a first width; forming spacers on sidewalls of the recess, with a gap therebetween; forming a trench in the substrate through the gap, the trench having a second width less than the first; removing the spacers; removing the hard mask layer; filling the trench and the recess with an oxide layer, forming a T-shaped STI region; forming another hard mask layer on a portion of the T-shaped STI region; and revealing a Fin by removing portions of the STI regions and the T-shaped STI region.
Abstract:
A method includes forming a fin in a semiconductor substrate. A plurality of sacrificial gate structures are formed above the fin. A selected one of the sacrificial gate structures is removed to define a first opening that exposes a portion of the fin. An etch process is performed through the first opening on the exposed portion of the fin to define a first recess in the fin. The first recess is filled with a dielectric material to define a diffusion break in the fin. A device includes a fin defined in a substrate, a plurality of gates formed above the fin, a plurality of recesses filled with epitaxial material defined in the fin, and a diffusion break defined at least partially in the fin between two of the recesses filled with epitaxial material and extending above the fin.
Abstract:
An e-fuse device disclosed herein includes an anode and a cathode that are conductively coupled to the doped region formed in a substrate, wherein the anode includes a first metal silicide region positioned on the doped region and a first conductive metal-containing contact that is positioned above and coupled to the first metal silicide region, and the cathode includes a second metal silicide region positioned on the doped region and a second conductive metal-containing contact that is positioned above and conductively coupled to the second metal silicide region. A method disclosed herein includes forming a doped region in a substrate for an e-fuse device and performing at least one common process operation to form a first conductive structure on the doped region of the e-fuse device and a second conductive structure on a source/drain region of a transistor.
Abstract:
One illustrative method disclosed herein includes, among other things, removing at least one, but not all, of a plurality of first features in a first patterned mask layer so as to define a modified first patterned masking layer, wherein removed first feature(s) correspond to a location where a final isolation structure will be formed, performing an etching process though the modified first patterned masking layer to form an initial isolation trench in the substrate, and performing another etching process through the modified first patterned mask layer to thereby define a plurality of fin-formation trenches in the substrate and to extend a depth of the initial isolation trench so as to define a final isolation trench for the final isolation structure.
Abstract:
The use of two different materials for shallow trench isolation and deep structural trenches with a dielectric material therein (e.g., flowable oxide and a HARP oxide, respectively) causes non-uniform heights of exposed portions of raised semiconductor structures for non-planar semiconductor devices, due to the different etch rates of the materials. Non-uniform openings adjacent the exposed portions of the raised structures from recessing the isolation and dielectric materials are filled with additional dielectric material to create a uniform top layer of one material (the dielectric material), which can then be uniformly recessed to expose uniform portions of the raised structures.
Abstract:
An e-fuse device disclosed herein includes an anode and a cathode that are conductively coupled to the doped region formed in a substrate, wherein the anode includes a first metal silicide region positioned on the doped region and a first conductive metal-containing contact that is positioned above and coupled to the first metal silicide region, and the cathode includes a second metal silicide region positioned on the doped region and a second conductive metal-containing contact that is positioned above and conductively coupled to the second metal silicide region. A method disclosed herein includes forming a doped region in a substrate for an e-fuse device and performing at least one common process operation to form a first conductive structure on the doped region of the e-fuse device and a second conductive structure on a source/drain region of a transistor.
Abstract:
A method includes forming a fin in a semiconductor substrate. A plurality of sacrificial gate structures are formed above the fin. A selected one of the sacrificial gate structures is removed to define a first opening that exposes a portion of the fin. An etch process is performed through the first opening on the exposed portion of the fin to define a first recess in the fin. The first recess is filled with a dielectric material to define a diffusion break in the fin. A device includes a fin defined in a substrate, a plurality of gates formed above the fin, a plurality of recesses filled with epitaxial material defined in the fin, and a diffusion break defined at least partially in the fin between two of the recesses filled with epitaxial material and extending above the fin.
Abstract:
Methods for creating uniform source/drain cavities filled with uniform levels of materials in an IC device and resulting devices are disclosed. Embodiments include forming a hard mask on an upper surface of a Si substrate, the hard mask having an opening over a STI region formed in the Si substrate and extending over adjacent portions of the Si substrate; forming low-k dielectric spacers on a lower portion of sidewalls of the opening, the spacers being formed between the sidewalls and the STI region; filling the opening with an oxide; removing the hard mask; removing an upper portion of the oxide and a portion of the low-k dielectric spacers; revealing a Si fin in the Si substrate; forming equally spaced gate electrodes, each having sidewall spacers, over the Si fin and the oxide; and forming source/drain regions in the Si fin between each pair of adjacent gate electrodes.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In one example, a method for fabricating an integrated circuit includes etching an enhanced high-aspect-ratio process (eHARP) oxide fill that is disposed in an STI trench between two adjacent fins to form a recessed eHARP oxide fill. The two adjacent fins extend from a bulk semiconductor substrate. A silicon layer is formed overlying the recessed eHARP oxide fill. The silicon layer is converted to a thermal oxide layer to further fill the STI trench with oxide material.
Abstract:
An intermediate semiconductor structure in fabrication includes a silicon semiconductor substrate, a hard mask of silicon nitride (SiN) over the substrate and a sacrificial layer of polysilicon or amorphous silicon over the hard mask. The sacrificial layer is patterned into sidewall spacers for mandrels of a filler material substantially different in composition from the sidewall spacers, such as a flowable oxide. The mandrels are removed such that the sidewall spacers have vertically tapered inner and outer sidewalls providing a rough triangular shape. The rough triangular sidewall spacers are used as a hard mask to pattern the SiN hard mask below.