Abstract:
A system and method of operating a twin-transistor, multi-time programmable memory (MTPM) memory cell that ensures accurate reproducibility of bit values read after each of write cycle. Each multi-time programmable memory cell includes a series connection of a first transistor and a second transistor. The method includes writing, using a write circuit at select memory cell locations, initial bit values to one or more select memory cells. Then, using the write circuit, a rebalancing of a state of a parameter associated with one or more the first transistor or second transistor, at each the select memory cell, is performed. Then, an erasing cycle is performed, at each the rebalanced select memory cell, the written initial bit value. In one embodiment, the erasing cycle may first be performed prior to rebalancing. The rebalancing and erasing are to be performed prior to each bit value write cycle.
Abstract:
Described are a hardware encryption engine, and secret key registration and authentication system recoverable binary bit using knowing an initial secret key stored in the master system. The secret key is overwritten in each authentication, updating it to the master and encryption engine independently. The secret key over write command can be preferably given to the chip as a CHG, and the non recoverable binary bit from the sense amplifier is used for response.