Abstract:
A method of forming a FinFET fin with low-doped and a highly-doped active portions and/or a FinFET fin having tapered sidewalls for Vt tuning and multi-Vt schemes and the resulting device are provided. Embodiments include forming an Si fin, the Si fin having a top active portion and a bottom active portion; forming a hard mask on a top surface of the Si fin; forming an oxide layer on opposite sides of the Si fin; implanting a dopant into the Si fin; recessing the oxide layer to reveal the active top portion of the Si fin; etching the top active portion of the Si fin to form vertical sidewalls; forming a nitride spacer covering each vertical sidewall; recessing the recessed oxide layer to reveal the active bottom portion of the Si fin; and tapering the active bottom portion of the Si fin.
Abstract:
Semiconductor structures and methods of fabrication are provided, with one or both of an extended source-to-channel interface or an extended drain-to-channel interface. The fabrication method includes, for instance, recessing a semiconductor material to form a cavity adjacent to a channel region of a semiconductor structure being fabricated, the recessing forming a first cavity surface and a second cavity surface within the cavity; and implanting one or more dopants into the semiconductor material through the first cavity surface to define an implanted region within the semiconductor material, and form an extended channel interface, the extended channel interface including, in part, an interface of the implanted region within the semiconductor material to the channel region of the semiconductor structure. In one embodiment, the semiconductor structure with the extended channel interface is a FinFET.
Abstract:
A method of forming a FinFET fin with low-doped and a highly-doped active portions and/or a FinFET fin having tapered sidewalls for Vt tuning and multi-Vt schemes and the resulting device are provided. Embodiments include forming an Si fin, the Si fin having a top active portion and a bottom active portion; forming a hard mask on a top surface of the Si fin; forming an oxide layer on opposite sides of the Si fin; implanting a dopant into the Si fin; recessing the oxide layer to reveal the active top portion of the Si fin; etching the top active portion of the Si fin to form vertical sidewalls; forming a nitride spacer covering each vertical sidewall; recessing the recessed oxide layer to reveal the active bottom portion of the Si fin; and tapering the active bottom portion of the Si fin.
Abstract:
Semiconductor substrates and methods for processing semiconductor substrates are provided. A method for processing a semiconductor substrate includes providing a semiconductor substrate having an outer edge, a central region, and a peripheral region between the outer edge and the central region. The semiconductor substrate also has an upper surface. The method includes forming an amorphous material over the upper surface of the semiconductor substrate in the peripheral region. Also, the method includes irradiating the upper surface of the semiconductor substrate, wherein the amorphous material inhibits cracking at the outer edge of the semiconductor substrate.
Abstract:
Semiconductor substrates and methods for fabricating integrated circuits are provided. A method for fabricating an integrated circuit includes providing a semiconductor substrate having an outer edge, a central region, and a peripheral region between the outer edge and the central region. The semiconductor substrate also has an upper surface. The method includes forming an amorphous material over the upper surface of the semiconductor substrate in the peripheral region. Also, the method includes irradiating the upper surface of the semiconductor substrate, wherein the amorphous material inhibits cracking at the outer edge of the semiconductor substrate.
Abstract:
Methods are provided for fabricating a fin-type field effect transistor(s), having a channel region within a fin. The methods include: establishing a protective material above an upper surface of the fin, and an isolation material adjacent to at least one sidewall of the fin, the isolation material being recessed down from the upper surface of the fin, for instance, for approximately a height of the channel region within the fin; and providing a punch-through stop dopant region within the fin below the channel region, the providing including implanting a punch-through stop dopant into the isolation material and laterally diffusing the punch-through stop dopant from the isolation material into the fin to form the punch-through stop region within the fin beneath the channel region.