摘要:
Integrated circuits and methods for producing the same are provided. In accordance with one embodiment a method of producing an integrated circuit includes forming a trench defined by a first material. The trench is filled with a second material to produce a gap defined within the second material, where the second material is in a solid state. The second material is reflowed within the trench to reduce a volume of the gap, and the second material is then solidified within the trench.
摘要:
In-situ melting and crystallization of sealed cooper wires can be performed by means of laser annealing for a duration of nanoseconds. The intensity of the laser irradiation is selected such that molten copper wets interconnect interfaces, thereby forming an interfacial bonding arrangement that increases specular scattering of electrons. Nanosecond-scale temperature quenching preserves the formed interfacial bonding. At the same time, the fast crystallization process of sealed copper interconnects results in large copper grains, typically larger than 80 nm in lateral dimensions, on average. A typical duration of the annealing process is from about 10's to about 100's of nanoseconds. There is no degradation to interlayer low-k dielectric material despite the high anneal temperature due to ultra short duration that prevents collective motion of atoms within the dielectric material.
摘要:
Provided is a semiconductor device that includes a semiconductor substrate and a 10 to 40 Å thick high-k dielectric layer that contains one or both of hafnium dioxide (HfO2) and zirconium dioxide (ZrO2). The high-k dielectric layer is disposed on the semiconductor substrate, and it contains at least some tetragonal phase HfO2 and/or tetragonal phase ZrO2. Also provided are methods for making the semiconductor device, and electronic devices that employ the semiconductor device.
摘要:
Integrated circuits with stressed semiconductor substrates, processes for preparing stressed semiconductor substrates, and processes for preparing integrated circuits including stressed semiconductor substrates are provided herein. An exemplary process for preparing a stressed semiconductor substrate includes providing a semiconductor substrate of a semiconductor material having a first crystalline lattice constant; introducing a dopant on and into a surface layer of the semiconductor substrate via ion implantation at an amount above a solubility limit of the dopant in the semiconductor material to form a dopant-containing surface layer of the semiconductor substrate; applying energy to the dopant-containing surface layer of the semiconductor substrate with an ultra-short pulse laser to form a molten semiconductor:dopant layer on a surface of the semiconductor substrate; and removing the energy such that the molten semiconductor:dopant layer forms a solid semiconductor:dopant layer with a second crystalline lattice having a second lattice constant that differs from the first lattice constant.
摘要:
Circuit structure fabrication methods are provided which include: providing an interlayer structure above a substrate, the interlayer structure including porogens dispersed within a dielectric material; and pulse laser annealing the interlayer structure to form a treated interlayer structure, the pulse laser annealing polymerizing the dielectric material of the interlayer structure to form a polymeric dielectric material, that includes pores disposed therein. The pulse laser annealing facilitates increasing elasticity modulus of the treated interlayer structure by, in part, maintaining structural integrity of the treated interlayer structure, notwithstanding that there are pores disposed within the polymeric dielectric material which, for instance, facilitates reducing dielectric constant of the treated interlayer structure.
摘要:
Integrated circuits and methods for producing the same are provided. In accordance with one embodiment a method of producing an integrated circuit includes forming a trench defined by a first material. The trench is filled with a second material to produce a gap defined within the second material, where the second material is in a solid state. The second material is reflowed within the trench to reduce a volume of the gap, and the second material is then solidified within the trench.
摘要:
Methods are providing for fabricating transistors having at least one source region or drain region with a stressed portion. The methods include: forming, within a cavity of a substrate structure, the at least one source region or drain region with the internal stress; and resurfacing the at least one source region or drain region to reduce surface defects of the at least one source region or drain region without relaxing the stressed portion thereof. For instance, the resurfacing can include melting an upper portion of the at least one source region or drain region. In addition, the resurfacing can include re-crystallizing an upper portion of the at least one source region or drain region, and/or providing the at least one source region or drain region with at least one {111} surface.
摘要:
A method includes forming a trench in a stack comprising a substrate, a buried oxide layer formed above the substrate, a semiconductor layer formed above the buried oxide layer and a hard mask layer formed above the semiconductor layer. A first liner is formed in the trench. A first oxide layer is formed in the trench. A diffusionless anneal process is performed to densify the first oxide layer. The first oxide layer is recessed to define a recess. A second oxide layer is formed in the recess.
摘要:
Semiconductor substrates and methods for processing semiconductor substrates are provided. A method for processing a semiconductor substrate includes providing a semiconductor substrate having an outer edge, a central region, and a peripheral region between the outer edge and the central region. The semiconductor substrate also has an upper surface. The method includes forming an amorphous material over the upper surface of the semiconductor substrate in the peripheral region. Also, the method includes irradiating the upper surface of the semiconductor substrate, wherein the amorphous material inhibits cracking at the outer edge of the semiconductor substrate.
摘要:
Semiconductor substrates and methods for fabricating integrated circuits are provided. A method for fabricating an integrated circuit includes providing a semiconductor substrate having an outer edge, a central region, and a peripheral region between the outer edge and the central region. The semiconductor substrate also has an upper surface. The method includes forming an amorphous material over the upper surface of the semiconductor substrate in the peripheral region. Also, the method includes irradiating the upper surface of the semiconductor substrate, wherein the amorphous material inhibits cracking at the outer edge of the semiconductor substrate.