Abstract:
A semiconductor structure includes a fin upon a semiconductor substrate. A clean epitaxial growth surface is provided by forming a buffer layer upon fin sidewalls and an upper surface of the fin. The buffer layer may be epitaxially grown. Diamond shaped epitaxy is grown from the buffer layer sidewalls. In some implementations, the diamond shaped epitaxy may be subsequently merged with surrounding dielectric. A dopant concentration of the surrounding dielectric may be higher than a dopant concentration of the diamond shaped epitaxy.
Abstract:
A method for producing a semiconductor structure, as well as a semiconductor structure, that uses a partial removal of an insulating layer around a semiconductor fin, and subsequently epitaxially growing an additional semiconductor material in the exposed regions, while maintaining the shape of the fin with the insulating layer.
Abstract:
The present invention relates generally to semiconductor devices and more particularly, to a structure and method of forming an abrupt junction in the channel regions of high density technologies, such as tight pitch FinFET devices, using recessed source-drain (S-D) regions and annealing techniques. In an embodiment, a faceted buffer layer, deposited before the S-D region is formed, may be used to control the profile and dopant concentration of the junction under the channel. In another embodiment, the profile and dopant concentration of the junction may be controlled via a dopant concentration gradient in the S-D region.
Abstract:
A semiconductor structure includes a fin upon a semiconductor substrate. A clean epitaxial growth surface is provided by forming a buffer layer upon fin sidewalls and an upper surface of the fin. The buffer layer may be epitaxially grown. Diamond shaped epitaxy is grown from the buffer layer sidewalls. In some implementations, the diamond shaped epitaxy may be subsequently merged with surrounding dielectric. A dopant concentration of the surrounding dielectric may be higher than a dopant concentration of the diamond shaped epitaxy.
Abstract:
Embodiments of the present invention provide a method for epitaxially growing a FinFET. One method may include providing a semiconductor substrate including an insulator and an underlayer; forming a channel layer on the semiconductor substrate using epitaxial growth; etching a recess into the channel layer and epitaxially regrowing a portion on the channel layer; etching the channel layer and the underlayer to form fins; forming a gate structure and a set of spacers; etching a source drain region into the channel layer; and forming a source drain material in the source drain region.