Abstract:
Methods for modifying a physical design of an electrical circuit used in the manufacture of a semiconductor device, and methods for fabricating an integrated circuit, are provided. In an embodiment, a method includes providing a circuit design layout that has a plurality of element patterns. A first library of problematic sections is provided. An initial circuit section and an additional circuit section within the circuit design layout are determined to match problematic sections in the first library, and the initial and additional circuit sections have overlapping peripheral boundaries. A second library of replacement sections is provided. The replacement sections correspond to the problematic sections. The circuit sections that match the problematic sections are replaced with a replacement section that corresponds to the respective problematic sections to form the final circuit layout. Boundary characteristics of the replacement sections are substantially the same as the circuit sections replaced thereby.
Abstract:
A process and apparatus are provided for automated pattern-based semiconductor design layout correction. Embodiments include: determining a portion of a layout of an IC design, the portion comprising a first pattern of a plurality of routes connecting a plurality of design connections; determining one or more sets of the plurality of design connections based on the plurality of routes; and determining, by a processor, a second pattern of a plurality of routes connecting the plurality of design connections within the portion based on the one or more sets.
Abstract:
Methodologies and a device for assessing integrated circuit and pattern for yield risk based on 3D simulation of semiconductor patterns are provided. Embodiments include generating, with a processor, a 3D simulation of semiconductor patterns; obtaining critical dimensions of distances between layers or within a layer of the 3D simulation of semiconductor patterns; comparing the set of critical dimensions with predefined minimum dimensions; and yield scoring each of the semiconductor patterns of the 3D simulation based on the comparing step.
Abstract:
Disclosed is a method and corresponding system and program product that includes providing integrated circuit design layout(s), deconstructing the integrated circuit design layout(s) into unit-level geometric constructs, identifying anomalies in the unit-level geometric constructs, and storing anomaly data in a database. The method further includes determining one or more feature attributes for each of the plurality of unit-level geometric constructs, annotating the unit-level geometric constructs with feature attributes, resulting in annotated unit-level geometric constructs, mapping the annotated unit-level geometric constructs in a hyperplane formed by one or more feature attributes, each of the one or more feature attributes forming a dimensional axis of the hyperplane, resulting in a mapped hyperplane, applying a first model to the mapped hyperplane, identifying the anomalies from applying the first model, and applying a second model to the mapped hyperplane to rank the anomalies for printability risk, the generated data including rank data.