Abstract:
An identification of a first area of an IC design surrounding a failure component is received; and, in response, a smaller portion of the first area is selected. The smaller portion also surrounds the failure component, is smaller than the first area, and contains less circuit components than the first area. The smaller portion is matched to other areas of the IC design to identify potentially undesirable patterns of the IC design that are the same size as the first area. Additionally, the potentially undesirable patterns are grouped into pattern categories, the pattern categories are matched to known good pattern categories, and the known good patterns are removed from the potentially undesirable patterns to leave potential failure patterns. The potential failure patterns of the IC design are then output.
Abstract:
At least one method, apparatus and system disclosed involves circuit layout for an integrated circuit device. A design for an integrated circuit device is received; The design comprises a first functional cell and a second functional cell. The first functional cell is placed on a circuit layout. A determination is made as to whether the first cell comprises a vertical boundary that is electrically floating. A filler cell is placed adjacent to the vertical boundary on the circuit layout in response to determining that the first cell comprises the vertical boundary that is electrically floating. The second functional cell is placed adjacent to the filler cell to form a contiguous active area on the circuit layout.
Abstract:
An identification of a first area of an IC design surrounding a failure component is received; and, in response, a smaller portion of the first area is selected. The smaller portion also surrounds the failure component, is smaller than the first area, and contains less circuit components than the first area. The smaller portion is matched to other areas of the IC design to identify potentially undesirable patterns of the IC design that are the same size as the first area. Additionally, the potentially undesirable patterns are grouped into pattern categories, the pattern categories are matched to known good pattern categories, and the known good patterns are removed from the potentially undesirable patterns to leave potential failure patterns. The potential failure patterns of the IC design are then output.
Abstract:
At least one method, apparatus and system disclosed involves circuit layout for an integrated circuit device. A design for an integrated circuit device is received; The design comprises a first functional cell and a second functional cell. The first functional cell is placed on a circuit layout. A determination is made as to whether the first cell comprises a vertical boundary that is electrically floating. A filler cell is placed adjacent to the vertical boundary on the circuit layout in response to determining that the first cell comprises the vertical boundary that is electrically floating. The second functional cell is placed adjacent to the filler cell to form a contiguous active area on the circuit layout.
Abstract:
Methodologies and a device for assessing integrated circuit and pattern for yield risk based on 3D simulation of semiconductor patterns are provided. Embodiments include generating, with a processor, a 3D simulation of semiconductor patterns; obtaining critical dimensions of distances between layers or within a layer of the 3D simulation of semiconductor patterns; comparing the set of critical dimensions with predefined minimum dimensions; and yield scoring each of the semiconductor patterns of the 3D simulation based on the comparing step.
Abstract:
Disclosed is a method and corresponding system and program product that includes providing integrated circuit design layout(s), deconstructing the integrated circuit design layout(s) into unit-level geometric constructs, identifying anomalies in the unit-level geometric constructs, and storing anomaly data in a database. The method further includes determining one or more feature attributes for each of the plurality of unit-level geometric constructs, annotating the unit-level geometric constructs with feature attributes, resulting in annotated unit-level geometric constructs, mapping the annotated unit-level geometric constructs in a hyperplane formed by one or more feature attributes, each of the one or more feature attributes forming a dimensional axis of the hyperplane, resulting in a mapped hyperplane, applying a first model to the mapped hyperplane, identifying the anomalies from applying the first model, and applying a second model to the mapped hyperplane to rank the anomalies for printability risk, the generated data including rank data.
Abstract:
At least one method, apparatus and system disclosed herein involves performing power reduction process on a FinFET device. A first design is provided. The first design comprises a process mask definition, a FinFET device that comprises a plurality of fins characterized by said process mask, and a timing requirement relating to an operation of said FinFET device. A timing parameter of said operation of said FinFET device is determined. Based upon said timing parameter, a determination is made as to whether a drive capability of said FinFET device is above a level required to maintain said timing requirement. The process mask is modified for reducing at least one of said fins in response to said determining that said drive capability is above said level required to maintain said timing requirement.
Abstract:
One illustrative method disclosed includes, among other things, forming a sacrificial S/D contact structure above an S/D region of a transistor device, removing at least a portion of a gate cap and at least a portion of a gate sidewall spacer to define a gate contact cavity that is positioned entirely above the active region and exposes an upper surface of a gate structure of the transistor device, and forming an internal sidewall spacer within the gate contact cavity. The method also includes performing at least one process operation to remove at least the sacrificial S/D contact structure and define a S/D contact cavity, and forming a gate contact structure within the gate contact cavity that is conductively coupled to the gate structure and forming a S/D contact structure within the S/D contact cavity that is conductively coupled to the S/D region.
Abstract:
One illustrative method disclosed includes, among other things, forming a sacrificial S/D contact structure above an S/D region of a transistor device, removing at least a portion of a gate cap and at least a portion of a gate sidewall spacer to define a gate contact cavity that is positioned entirely above the active region and exposes an upper surface of a gate structure of the transistor device, and forming an internal sidewall spacer within the gate contact cavity. The method also includes performing at least one process operation to remove at least the sacrificial S/D contact structure and define a S/D contact cavity, and forming a gate contact structure within the gate contact cavity that is conductively coupled to the gate structure and forming a S/D contact structure within the S/D contact cavity that is conductively coupled to the S/D region.
Abstract:
At least one method, apparatus and system disclosed herein involves performing power reduction process on a FinFET device. A first design is provided. The first design comprises a process mask definition, a FinFET device that comprises a plurality of fins characterized by said process mask, and a timing requirement relating to an operation of said FinFET device. A timing parameter of said operation of said FinFET device is determined. Based upon said timing parameter, a determination is made as to whether a drive capability of said FinFET device is above a level required to maintain said timing requirement. The process mask is modified for reducing at least one of said fins in response to said determining that said drive capability is above said level required to maintain said timing requirement.