Abstract:
A method of forming contacts includes forming a plurality of transistor devices separated by shallow trench insulator regions, the transistor devices each comprising a semiconductor substrate, a buried insulator layer on the semiconductor bulk substrate, a semiconductor layer on the buried insulator layer, a high-k metal gate stack on the semiconductor layer and a gate electrode above the high-k metal gate stack, raised source/drain regions on the semiconductor layer, and a silicide contact layer above the raised source/drain regions and the gate electrode, providing an interlayer dielectric stack on the silicide contact layer and planarizing the interlayer dielectric stack, patterning a plurality of contacts through the interlayer dielectric stack onto the raised source/drain regions, and, for at least some of the contacts, patterning laterally extended contact regions above the contacts, the laterally extended contact regions extending over shallow trench insulator regions neighboring the corresponding raised source/drain regions.
Abstract:
Interconnect structures and methods of fabricating an interconnect structure. First and second non-mandrel interconnects are formed in an interlayer dielectric layer. The first non-mandrel interconnect and the second non-mandrel interconnect have respective side surfaces that extend in a first direction. The connector interconnect extends in a second direction transverse to the first direction from the side surface of the first non-mandrel interconnect to the side surface of the second non-mandrel interconnect.
Abstract:
Interconnect structures and methods of fabricating an interconnect structure. First and second non-mandrel interconnects are formed in an interlayer dielectric layer. The first non-mandrel interconnect and the second non-mandrel interconnect have respective side surfaces that extend in a first direction. The connector interconnect extends in a second direction transverse to the first direction from the side surface of the first non-mandrel interconnect to the side surface of the second non-mandrel interconnect.
Abstract:
Structures for testing a field effect-transistor or Kelvin field-effect transistor, and methods of forming a structure for testing a field-effect transistor or Kelvin field-effect transistor. The structure includes a device-under-testing that has one or more source/drain regions and a first metallization level arranged over the device-under-testing. The first metallization level includes one or more first interconnect lines. The structure further includes a contact level having one or more first contacts arranged between the first metallization level and the device-under-testing. The one or more first contacts directly connect the one or more first interconnect lines with the one or more source/drain regions. The structure further includes a second metallization level arranged over the first metallization level. The second metallization level has a first test pad and one or more second interconnect lines connecting the one or more first interconnect lines with the first test pad.
Abstract:
A method of forming contacts includes forming a plurality of transistor devices separated by shallow trench insulator regions, the transistor devices each comprising a semiconductor substrate, a buried insulator layer on the semiconductor bulk substrate, a semiconductor layer on the buried insulator layer, a high-k metal gate stack on the semiconductor layer and a gate electrode above the high-k metal gate stack, raised source/drain regions on the semiconductor layer, and a silicide contact layer above the raised source/drain regions and the gate electrode, providing an interlayer dielectric stack on the silicide contact layer and planarizing the interlayer dielectric stack, patterning a plurality of contacts through the interlayer dielectric stack onto the raised source/drain regions, and, for at least some of the contacts, patterning laterally extended contact regions above the contacts, the laterally extended contact regions extending over shallow trench insulator regions neighboring the corresponding raised source/drain regions.
Abstract:
Structures for an on-chip capacitor and methods of forming an on-chip capacitor. A metal terminal is formed that has a side edge. Metal fingers are formed that have a parallel arrangement. Floating islands comprised of a metal are formed and are electrically isolated from the metal fingers. Each of the metal fingers has an end and extends from the side edge of the metal terminal toward the end. Each of the floating islands is arranged in a spaced relationship with the end of a respective one of the metal fingers.
Abstract:
Methodologies enabling BEoL VNCAPs in ICs and resulting devices are disclosed. Embodiments include: providing a plurality of mandrel recesses extending horizontally on a substrate, each of the mandrel recesses having an identical width and being separated from another one of the mandrel recesses by an identical distance; providing a plurality of routes, each of the plurality of routes being positioned in a different one of the mandrel recesses; and providing first and second vertical segments on the substrate, the first vertical segment being connected to a set of the plurality of routes and separated from the second vertical segment, and the second vertical segment being separated from the set of routes.
Abstract:
Structures for testing a field effect-transistor or Kelvin field-effect transistor, and methods of forming a structure for testing a field-effect transistor or Kelvin field-effect transistor. The structure includes a test pad, a device-under-testing having one or more source/drain regions, and a metallization level arranged over the device-under-testing. The metallization level includes one or more interconnect lines that are connected with the test pad. One or more contacts, which are arranged between the metallization level and the device-under-testing, directly connect the one or more interconnect lines with the one or more source/drain regions.
Abstract:
Methodologies and a device for assessing integrated circuit and pattern for yield risk based on 3D simulation of semiconductor patterns are provided. Embodiments include generating, with a processor, a 3D simulation of semiconductor patterns; obtaining critical dimensions of distances between layers or within a layer of the 3D simulation of semiconductor patterns; comparing the set of critical dimensions with predefined minimum dimensions; and yield scoring each of the semiconductor patterns of the 3D simulation based on the comparing step.
Abstract:
A method includes forming a trench in a stack comprising a substrate, a buried oxide layer formed above the substrate, a semiconductor layer formed above the buried oxide layer and a hard mask layer formed above the semiconductor layer. A first liner is formed in the trench. A first oxide layer is formed in the trench. A diffusionless anneal process is performed to densify the first oxide layer. The first oxide layer is recessed to define a recess. A second oxide layer is formed in the recess.