Abstract:
Disclosed herein are various methods of forming stressed channel regions on 3D semiconductor devices, such as, for example, FinFET semiconductor devices, through use of epitaxially formed materials. In one example, the method includes forming a plurality of spaced-apart trenches in a semiconducting substrate, wherein the trenches define at least a portion of a fin for the device, and performing an epitaxial deposition process to form an epitaxially formed stress-inducing material in the trenches.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a plurality of fin-formation trenches that define a fin, forming a first stressed layer within the trenches and above the fin and performing at least one etching process on the first stressed layer so as to define spaced-apart portions of the first stressed layer positioned at least partially within the trenches on opposite sides of the fin. The method also includes forming spaced-apart portions of a second stressed layer above the spaced-apart portions of the first layer, forming a third stressed layer above the fin between the spaced-apart portions of the second layer and, after forming the third layer, forming a conductive layer above the second and third layers.
Abstract:
Disclosed herein are various methods of forming stressed channel regions on 3D semiconductor devices, such as, for example, FinFET semiconductor devices, through use of epitaxially formed materials. In one example, the method includes forming a plurality of spaced-apart trenches in a semiconducting substrate, wherein the trenches define at least a portion of a fin for the device, and performing an epitaxial deposition process to form an epitaxially formed stress-inducing material in the trenches.
Abstract:
One method disclosed herein includes forming a first stressed conductive layer within the trenches of a FinFET device and above the upper surface of a fin, forming a second stressed conductive layer above the first stressed conductive layer, removing a portion of the second stressed conductive layer and a portion of the first stressed conductive layer that is positioned above the fin while leaving portions of the first stressed conductive layer positioned within the trenches, and forming a conductive layer above the second stressed conductive layer, the upper surface of the fin and the portions of the first stressed conductive layer positioned within the trenches.
Abstract:
A diode for integration with finFET devices is disclosed. An in-situ doped epitaxial silicon region is grown on the cathode or anode of the diode to increase the surface area of the junction and overall silicon volume for improved heat dissipation during an ESD event.
Abstract:
One method disclosed herein includes forming a first stressed conductive layer within the trenches of a FinFET device and above the upper surface of a fin, forming a second stressed conductive layer above the first stressed conductive layer, removing a portion of the second stressed conductive layer and a portion of the first stressed conductive layer that is positioned above the fin while leaving portions of the first stressed conductive layer positioned within the trenches, and forming a conductive layer above the second stressed conductive layer, the upper surface of the fin and the portions of the first stressed conductive layer positioned within the trenches.