Abstract:
After forming a material stack including a gate dielectric, a work function metal and a cobalt gate electrode in a gate cavity formed by removing a sacrificial gate structure, the cobalt gate electrode is recessed by oxidizing the cobalt gate electrode to provide a cobalt oxide layer on a surface of the cobalt gate electrodes and removing the cobalt oxide layer from the surface of the cobalt gate electrodes by a chemical wet etch. The oxidation and oxide removal steps can be repeated until the cobalt gate electrode is recessed to any desired thickness. The work function metal can be recessed after the recessing of the cobalt gate electrode is completed or during the recessing of the cobalt gate electrode.
Abstract:
Integrated circuit (IC) structure embodiments and methods of forming them with middle of the line (MOL) contacts that incorporate a protective cap, which provides protection from damage during back end of the line (BEOL) processing. Each MOL contact has a main body in a lower portion of a contact opening. The main body has a liner (e.g., a titanium nitride layer) that lines the lower portion and a metal layer on the liner. The MOL contact also has a protective cap in an upper portion of the contact opening above the first metal layer and extending laterally over the liner to the sidewalls of the contact opening. The protective cap has an optional liner, which is different from the liner in the lower portion, and a metal layer, which is either the same or different than the metal in the main body.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a plurality of fin-formation trenches that define a fin, forming a first stressed layer within the trenches and above the fin and performing at least one etching process on the first stressed layer so as to define spaced-apart portions of the first stressed layer positioned at least partially within the trenches on opposite sides of the fin. The method also includes forming spaced-apart portions of a second stressed layer above the spaced-apart portions of the first layer, forming a third stressed layer above the fin between the spaced-apart portions of the second layer and, after forming the third layer, forming a conductive layer above the second and third layers.
Abstract:
After forming a material stack including a gate dielectric, a work function metal and a cobalt gate electrode in a gate cavity formed by removing a sacrificial gate structure, the cobalt gate electrode is recessed by oxidizing the cobalt gate electrode to provide a cobalt oxide layer on a surface of the cobalt gate electrodes and removing the cobalt oxide layer from the surface of the cobalt gate electrodes by a chemical wet etch. The oxidation and oxide removal steps can be repeated until the cobalt gate electrode is recessed to any desired thickness. The work function metal can be recessed after the recessing of the cobalt gate electrode is completed or during the recessing of the cobalt gate electrode.
Abstract:
Integrated circuit (IC) structure embodiments and methods of forming them with middle of the line (MOL) contacts that incorporate a protective cap, which provides protection from damage during back end of the line (BEOL) processing. Each MOL contact has a main body in a lower portion of a contact opening. The main body has a liner (e.g., a titanium nitride layer) that lines the lower portion and a metal layer on the liner. The MOL contact also has a protective cap in an upper portion of the contact opening above the first metal layer and extending laterally over the liner to the sidewalls of the contact opening. The protective cap has an optional liner, which is different from the liner in the lower portion, and a metal layer, which is either the same or different than the metal in the main body.
Abstract:
One illustrative device disclosed herein includes, among other things, a semiconductor substrate, a fin structure, a gate structure positioned around a portion of the fin structure in the channel region of the device, spaced-apart portions of a second semiconductor material positioned vertically between the fin structure and the substrate, wherein the second semiconductor material is a different semiconductor material than that of the fin, and a local channel isolation material positioned laterally between the spaced-apart portions of the second semiconductor material and vertically below the fin structure and the gate structure, wherein the local channel isolation material is positioned under at least a portion of the channel region of the device.
Abstract:
One method disclosed includes performing a selective etching process through a gate cavity to selectively remove a portion of a first semiconductor material relative to a second layer of a second semiconductor material and a substrate so as to thereby define a space between the second semiconducting material and the substrate, filling substantially all of the space with an insulating material so as to thereby define a substantially self-aligned channel isolation region positioned under at least what will become the channel region of the FinFET device.
Abstract:
One method disclosed includes performing a selective etching process through a gate cavity to selectively remove a portion of a first semiconductor material relative to a second layer of a second semiconductor material and a substrate so as to thereby define a space between the second semiconducting material and the substrate, filling substantially all of the space with an insulating material so as to thereby define a substantially self-aligned channel isolation region positioned under at least what will become the channel region of the FinFET device.
Abstract:
Performance of a FinFET is enhanced through a structure that exerts physical stress on the channel. The stress is achieved by a combination of tungsten contacts for the source and drain, epitaxially grown raised source and raised drain, and manipulation of aspects of the tungsten contact deposition resulting in enhancement of the inherent stress of tungsten. The stress can further be enhanced by epitaxially re-growing the portion of the raised source and drain removed by etching trenches for the contacts and/or etching deeper trenches (and corresponding longer contacts) below a surface of the fin.
Abstract:
Structures that include a field effect-transistor and methods of forming a structure that includes a field-effect transistor. A first field-effect transistor includes a first source/drain region, and a second field-effect transistor includes a second source/drain region. A first contact is arranged over the first source/drain region, and a second contact is arranged over the second source/drain region. A portion of a dielectric layer, which is composed of a low-k dielectric material, is laterally arranged between the first contact and the second contact.