Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to asymmetric junctionless fin field effect transistor (FINFET) structures and methods of manufacture. The structure includes: a nanowire fin comprising a first width adjacent to a source region and a second width adjacent to a drain region, the first width and the second width being different dimensions; and a gate structure over the nanowire fin, the gate structure spanning over the first width and the second width and being between the source region and the drain region.
Abstract:
A sensor may be provided, including a substrate having a first semiconductor layer, a second semiconductor layer, and a buried insulator layer arranged between the first semiconductor layer and the second semiconductor layer. The sensor may further include a photodiode arranged in the first semiconductor layer; and a quenching resistive element electrically connected in series with the photodiode. The quenching resistive element is arranged in the second semiconductor layer, and the quenching resistive element is arranged over the photodiode but separated from the photodiode by the buried insulator layer.
Abstract:
A resistive random access memory (RRAM) device may be provided, including: a base layer, a vertical electrode stack arranged over the base layer, where the vertical electrode stack may include alternating mask elements and first electrodes, and each first electrode may include an extended portion extending beyond at least one side surface of at least one mask element adjoining the first electrode, a switching layer arranged along the extended portion of each first electrode and along the at least one side surface of the at least one mask element adjoining the first electrode, and a second electrode including a surface in contact with the switching layer. The RRAM device may have a 3D structure.
Abstract:
Methods of forming a ferroelectric material layer below a field plate for achieving increased Vbr with reduced Rdson and resulting devices are provided. Embodiments include forming a N-Drift in a portion of the Si layer formed in a portion of a p-sub; forming an oxide layer over portions of the Si layer and the N-Drift; forming a gate over a portion of the oxide layer; forming a S/D extension region in the Si layer; forming first and second spacers on opposite sides of the gate and the oxide layer; forming a S/D region in the Si layer adjacent to the S/D extension region and a S/D region in the N-Drift remote from the Si layer; forming a U-shaped ferroelectric material layer over the oxide layer and the N-Drift, proximate or adjacent to the gate; and filling the U-shaped ferroelectric material layer with a metal, a field gate formed.
Abstract:
A split gate non-volatile memory (NVM) cell formed on a crystalline-on-insulator (COI) substrate, such as a fully or partially depleted silicon-on-insulator (SOI) substrate is disclosed. The split gate memory cell includes a split gate disposed on a surface substrate of the SOI substrate between source/drain (S/D) regions. The split gate includes a storage gate with a control gate (CG) over a floating gate (FG), and a select gate (SG). A back gate is provided on the bulk substrate below a buried oxide (BOX). The back gate may be doped with the same polarity type dopants as the S/D regions. The back gate is coupled to the CG to increase CG coupling ratio, improving programming performance. Alternatively, the back gate may be doped with the opposite polarity type dopants as the S/D regions. The back gate is coupled to a negative bias during program and erase operations. The negative bias increases the gate threshold voltages of the SG and CG, resulting in higher electron generation efficiency to improve programming speed as well as a higher electric field to increase erase speed.
Abstract:
Devices and methods for manufacturing a device are presented. The device includes a substrate and a vertical structure disposed over the substrate. The vertical structure includes one or more memory cell stacks with a dielectric layer between every two adjacent cell stacks. Each of the one or more cell stacks includes first and second first type conductors on first and second sides of the cell stack, respectively; first and second electrodes, the first electrode adjacent the first first type conductor, the second electrode adjacent the second first type conductor; and first and second memory elements, the first memory element disposed between the first first type conductor and the first electrode, the second memory element disposed between the second first type conductor and the second electrode. The device also includes a selector element disposed over the substrate and vertically traversing through a middle portion of the vertical structure. The selector element includes respective first and second selector diodes for the first and second memory elements of each of the one or more cell stacks.
Abstract:
The threshold voltage of parasitic transistors formed at corners of shallow trench isolation regions is increased and mobility decreased by employing a high-K dielectric material. Embodiments include STI regions comprising a liner of a high-K dielectric material extending proximate trench corners. Embodiments also include STI regions having a recess formed in the trench, wherein the recess contains a high-K dielectric material, in the form of a layer or spacer, extending proximate trench corners.
Abstract:
Embodiments of a simple and cost-free multi-time programmable (MTP) structure for non-volatile memory cells are presented. The memory cell includes a substrate. A floating gate is disposed over a transistor well. A control gate disposed over a control well is coupled to the floating gate. The control gate includes a control capacitor. A non-self-aligned source/drain (S/D) region is disposed within the transistor well and serves as an erase terminal.
Abstract:
An RRAM is disclosed with a vertical BJT selector. Embodiments include defining a STI region in a substrate, implanting dopants in the substrate to form a first polarity well around and below a bottom portion of the STI region, a second polarity channel over the well on opposite sides of the STI region, and a first polarity active area over each channel at the surface of the substrate, forming an RRAM liner on the active area and STI region, forming a sacrificial top electrode on the RRAM liner, forming spacers on opposite sides of the sacrificial top electrode, implanting a second polarity dopant in the active area on opposite sides of the sacrificial top electrode, forming a silicon oxide adjacent the spacers, removing at least a portion of the sacrificial top electrode forming a cavity, forming in the cavity inner spacers adjacent the spacers and a top electrode.
Abstract:
Embodiments of a simple and cost-free multi-time programmable (MTP) structure for non-volatile memory cells are presented. A non-volatile MTP memory cell includes a substrate, first and second wells disposed in the substrate, a first transistor having a select gate and a second transistor having a floating gate adjacent one another and disposed over the second well and sharing a diffusion region. The memory cell further includes a control gate disposed over the first well. The control gate is coupled to the floating gate and the control and floating gates include the same gate layer extending across the first and the second wells.