Abstract:
A heat pump system, including a thermal storage medium, for use in a vehicle having a passenger compartment, and a corresponding method for providing heat to a vehicle passenger compartment. The vehicle may have an electric only vehicle mode wherein the vehicle may occupy one of an active electric drive state and an inactive state. The heat pump system may include a thermal storage medium configured to store heat produced during the inactive state. The thermal storage medium may be a device which has a thermal capacity exchangeable with a fluid medium such as an Rechargeable Energy Storage System (RESS) or a phase change material. The heat stored by the thermal storage medium during the vehicle charge event may be transmitted from the thermal storage medium to the passenger compartment via the heat pump system during the active electric drive state.
Abstract:
A thermal management system having a first heating device, such as a rechargeable energy storage system (RESS), and a second heating device, such as an internal combustion engine (ICE), for a vehicle is provided. The system may allow waste heat within an ICE to be stored in a RESS, and may cool the RESS by depositing heat in the ICE. The RESS and the ICE are located in a first coolant circuit and a second coolant circuit, respectively. The system also includes a third coolant circuit interconnected with the first coolant circuit, and in thermal communication with the second coolant circuit via a first heat exchanger. The first and third coolant circuits are configured to circulate a first coolant, and the second coolant circuit is configured to circulate a second coolant. The RESS and the ICE are each configured to selectively operate as a heat source or a heat sink.
Abstract:
A thermal management system for a vehicle and a method for controlling the same are provided. The thermal management system comprises a first coolant circuit, a second coolant circuit, a refrigerant circuit, and a controller. The first coolant circuit includes at least a first coolant circuit heat exchanger, a Coolant Heater Control Module (CHCM), a CHCM mixing valve, and a bypass valve. The CHCM mixing valve is configured to modulate flow of a coolant between the first coolant circuit heat exchanger and the CHCM. The bypass valve is configured to link the first coolant circuit with the engine. The controller directs the thermal management system to operate in one of a high efficiency mode, a heat pump assist mode, a maximum performance mode, and a propulsion system energy improvement mode, effectuating the selected mode of operation via the actuation of the CHCM valve and the bypass valve to predetermined positions.
Abstract:
A thermal management system for a battery pack having a conductive cooling plate and battery cells includes a compressor, flow control valves, temperature sensor(s), and a controller. The compressor circulates refrigerant through the plate to cool the cells. The temperature sensor measures a temperature of the battery pack. The controller is programmed to receive the temperature from the temperature sensors and selectively transmit switching control signals to the valves to command a change in direction or flow of the refrigerant through the cooling plate. This limits a temperature variance between the battery cells over time. A vehicle includes a transmission, an electric traction motor, a battery pack, and the thermal management system noted above. A method includes receiving the temperature, transmitting switching control signals to the valves, and controlling a flow of refrigerant through the plate via the valves in response to the switching control signals.
Abstract:
A heat pump system for use in a vehicle having a passenger compartment, and a thermal storage medium is provided. A method for providing heat to a vehicle passenger compartment is also provided. The vehicle may have an electric only vehicle mode wherein the vehicle may occupy one of an active electric drive state and an inactive state. The heat pump system may include a thermal storage medium configured to store heat produced during the inactive state. The thermal storage medium may be a device which has a thermal capacity exchangeable with a fluid medium such as an Rechargeable Energy Storage System (RESS) or a phase change material. The heat stored by the thermal storage medium during the vehicle charge event may be transmitted from the thermal storage medium to the passenger compartment via the heat pump system during the active electric drive state.
Abstract:
A vehicular heat pump system utilizing intermediate gas recompression is provided. The heat pump system is for use in a vehicle having a battery and a passenger compartment. The heat pump system may include a heating circuit and a cooling circuit each including a compressor having a first inlet and a second inlet and a vapour-liquid separator configured to separate intermediate pressure refrigerant supplied by a first expansion device into refrigerant in a gaseous state flowing therethrough and refrigerant in a liquid state flowing therethrough. The vapor-liquid separator may be configured to selectively inject refrigerant in a gaseous state into the compressor at the second inlet to increase the mass flow rate of the refrigerant. This allows the heat pump system to operate effectively in cold ambient temperatures. A method of operating a heat pump system utilizing intermediate gas recompression is also provided.
Abstract:
A vehicular heat pump system may have two inside heat exchangers within an HVAC module, and may operate in mild cooling and mild heating modes. In mild cooling mode, a first isolation valve and a second isolation valve are fully open and closed, respectively, to direct the refrigerant flow to the first inside heat exchanger only. In mild heating mode, the first isolation valve and the second isolation valve are fully closed and fully open, respectively, to direct the refrigerant flow to the second inside heat exchanger only. In both modes, a first metering device is partially open to control the flow and expansion of the refrigerant, and a second metering device is fully closed to prevent the refrigerant from flowing between the inside heat exchangers. This staged operation of the heat pump system may reduce the risk of flash fog as well as reduce discharge air temperature spreads.
Abstract:
An engine assembly with an air intake system and a turbocharger device in fluid communication with the air intake system includes an electronic control unit in communication with the air intake system and turbocharger device. A CAC system is in downstream fluid communication with the turbocharger device and in upstream fluid communication with the air intake system and includes at least one flow adjustment mechanism in communication with the electronic control unit and selectively positionable between a first position and one or more second positions to adjust velocity of air from the turbocharger device flowing through the CAC system and to manage condensation buildup in the CAC system and/or to open a bypass duct in order for some or all of the turbo airflow to bypass the CAC system to reduce or eliminate condensation buildup in the CAC system at warm ambient conditions and ice buildup at cold ambient conditions.
Abstract:
A vehicular heat pump system utilizing intermediate gas recompression is provided. The heat pump system is for use in a vehicle having a battery and a passenger compartment. The heat pump system may include a heating circuit and a cooling circuit each including a compressor having a first inlet and a second inlet and a vapor-liquid separator configured to separate intermediate pressure refrigerant supplied by a first expansion device into refrigerant in a gaseous state flowing therethrough and refrigerant in a liquid state flowing therethrough. The vapor-liquid separator may be configured to selectively inject refrigerant in a gaseous state into the compressor at the second inlet to increase the mass flow rate of the refrigerant. This allows the heat pump system to operate effectively in cold ambient temperatures. A method of operating a heat pump system utilizing intermediate gas recompression is also provided.
Abstract:
An engine assembly with an air intake system and a turbocharger device in fluid communication with the air intake system includes an electronic control unit in communication with the air intake system and turbocharger device. A CAC system is in downstream fluid communication with the turbocharger device and in upstream fluid communication with the air intake system and includes at least one flow adjustment mechanism in communication with the electronic control unit and selectively positionable between a first position and one or more second positions to adjust velocity of air from the turbocharger device flowing through the CAC system and to manage condensation buildup in the CAC system and/or to open a bypass duct in order for some or all of the turbo airflow to bypass the CAC system to reduce or eliminate condensation buildup in the CAC system at warm ambient conditions and ice buildup at cold ambient conditions.