Abstract:
A system and method of simultaneously calculating an isolation resistance and a y-capacitance of a RESS may include the steps of: injecting a first signal into a RESS; recording an output signal from the RESS in response to the injection of the first signal; multiplying the first signal with the output signal to determine a first product; multiplying a second signal with the output signal to determine a second product wherein the second signal is orthogonal to the first signal; filtering the first product to determine a first constant; filtering the second product to determine a second constant; processing the first constant to determine a y-capacitance value; and processing the second constant to determine an isolation resistance value.
Abstract:
A battery module that includes a plurality of battery cells having cell elements that are electrically coupled. Each cell includes a first capacitor plate pair having a first capacitor plate and a second capacitor plate at a first side of the cell element. Each cell also includes a second capacitor plate pair having a first capacitor plate and a second capacitor plate positioned at a second side of the cell element. The first capacitor plate at the second side of one cell element is capacitively coupled to the first capacitor plate at the first side of the cell element in an adjacent cell and the second capacitor plate at the second side of the one cell element is capacitively coupled to the second capacitor plate at the first side of the cell element in the adjacent cell so as to provide DC breaking.
Abstract:
A battery module that includes a plurality of battery cells having cell elements that are electrically coupled. Each cell includes a first capacitor plate pair having a first capacitor plate and a second capacitor plate at a first side of the cell element. Each cell also includes a second capacitor plate pair having a first capacitor plate and a second capacitor plate positioned at a second side of the cell element. The first capacitor plate at the second side of one cell element is capacitively coupled to the first capacitor plate at the first side of the cell element in an adjacent cell and the second capacitor plate at the second side of the one cell element is capacitively coupled to the second capacitor plate at the first side of the cell element in the adjacent cell so as to provide DC breaking.
Abstract:
A system and method for managing power flow in a fuel cell vehicle. The method provides a difference between a power limit signal and an actual power signal to a PI controller to generate a power offset signal. The method determines whether a fuel cell stack is able to provide enough power to satisfy a power request, and if so, adds the power request and the power offset signal to generate a stack power request signal to cause the upper power limit signal to move towards and be matched to the actual power signal. If the stack is not able to provide enough power to satisfy the load power request signal, the method subtracts the power offset signal from the power limit signal to provide a load limit signal to cause the actual stack power signal to move towards and be matched to the upper power limit signal.
Abstract:
A system and method of simultaneously calculating an isolation resistance and a y-capacitance of a RESS may include the steps of: injecting a first signal into a RESS; recording an output signal from the RESS in response to the injection of the first signal; multiplying the first signal with the output signal to determine a first product; multiplying a second signal with the output signal to determine a second product wherein the second signal is orthogonal to the first signal; filtering the first product to determine a first constant; filtering the second product to determine a second constant; processing the first constant to determine a y-capacitance value; and processing the second constant to determine an isolation resistance value.
Abstract:
A system and method for managing power flow in a fuel cell vehicle. The method provides a difference between a power limit signal and an actual power signal to a PI controller to generate a power offset signal. The method determines whether a fuel cell stack is able to provide enough power to satisfy a power request, and if so, adds the power request and the power offset signal to generate a stack power request signal to cause the upper power limit signal to move towards and be matched to the actual power signal. If the stack is not able to provide enough power to satisfy the load power request signal, the method subtracts the power offset signal from the power limit signal to provide a load limit signal to cause the actual stack power signal to move towards and be matched to the upper power limit signal.