Abstract:
In an example of a method for locating a Near Field Communication (NFC) antenna, an indication of an imminent use of the NFC antenna is received. In response to receiving the indication, a light is caused to illuminate a location of the NFC antenna, a logo of the NFC antenna, or an area within proximity of the location of the NFC antenna in a pattern.
Abstract:
In an example of a method for locating a Near Field Communication (NFC) antenna, an indication of an imminent use of the NFC antenna is received. In response to receiving the indication, a light is caused to illuminate a location of the NFC antenna, a logo of the NFC antenna, or an area within proximity of the location of the NFC antenna in a pattern.
Abstract:
A system and method of providing a plurality of services through a plurality of vehicle-generated Wi-Fi channels includes: generating at a first Wi-Fi module a first Wi-Fi channel that includes a master list of services provided by the first Wi-Fi module as well as one or more other Wi-Fi modules; receiving a request for a service included on the master list at the first Wi-Fi module from a wireless device communicating; determining that the service is not available through the first Wi-Fi module; identifying a second Wi-Fi module that provides the service; and transmitting a message to the wireless device identifying the second Wi-Fi module that provides the service identified in the request.
Abstract:
A short range wireless communication (SRWC) system for a vehicle and a method of using the SRWC system. The system includes a first SRWC node in the vehicle having a SRWC receiver and a SRWC transmitter, and a second SRWC node in the vehicle adapted to send and receive SRWC data. The first and second SRWC nodes are configured so that when the first and second SRWC nodes are operable, an SRWC object device perceives the first and second SRWC nodes as a single SRWC device.
Abstract:
A system and method for performing an operation at a vehicle is disclosed. The system includes a first acoustic transceiver that transmits and receives inaudible acoustic signals and a second acoustic transceiver that transmits and receives inaudible acoustic signals. The second acoustic transceiver is stationary with respect to the vehicle. A processor receive an inaudible acoustic signal transmitted between the first acoustic transceiver and the second acoustic transceiver, determines a location of the first acoustic transceiver with respect to the vehicle from the received signal, and performs an operation at the vehicle based on the location of the first acoustic transceiver with respect to the vehicle.
Abstract:
A method for initiating a projection session between one of a plurality devices and an infotainment system of a motor vehicle includes establishing communications with each of the plurality of mobile devices. Each of the plurality of devices is identified against a predetermined priority, such that each of the plurality of devices identified with a predetermined priority is assigned the predetermined priority. Each of the plurality of devices is prioritized from the highest to lowest based on the predetermined priority. A user configuration of the one of the plurality of devices with the highest priority is red. A connection between the one of the plurality of devices with the highest priority and the infotainment system of the motor vehicle is attempted. A communication session between the one of the plurality of devices with the highest priority and the infotainment system of the motor vehicle is then established.
Abstract:
A method for generating and transmitting a reminder message includes obtaining a unique user profile. The user profile includes a user identification (ID) indicative of a unique user, an object ID indicative of a unique object, and a device ID indicative of a unique mobile device. The processor is configured to predict a spatial relationship between the user, the object, and the mobile device. The prediction is based, in part, on the user ID, the object ID, and the device ID, where the prediction includes a geographic location for the user, the object, and/or the mobile device. The processor compares a location of at least two of the user, the object and the mobile device with the prediction of the user's spatial relationship with the object and the mobile device. The processor transmits a reminder message when the prediction of the spatial relationship exceeds a predetermined threshold.
Abstract:
A mobile communication system and a method of establishing a wireless connection between a vehicle and at least one mobile device. The method includes: establishing a first short range wireless communication (SRWC) link between the vehicle and the mobile device; and using the first SRWC link to establish a second SRWC link between the vehicle and the mobile device, wherein the first and second SRWC links use different SRWC protocols.
Abstract:
A system and method of providing a plurality of services through a plurality of vehicle-generated Wi-Fi channels includes: generating at a first Wi-Fi module a first Wi-Fi channel that includes a master list of services provided by the first Wi-Fi module as well as one or more other Wi-Fi modules; receiving a request for a service included on the master list at the first Wi-Fi module from a wireless device communicating; determining that the service is not available through the first Wi-Fi module; identifying a second Wi-Fi module that provides the service; and transmitting a message to the wireless device identifying the second Wi-Fi module that provides the service identified in the request.
Abstract:
A vehicle gateway module adapted to communicate using short range wireless communication (SRWC) and a method of receiving data from a wireless source via a SRWC chipset in a vehicle. The method includes the steps of: detecting the wireless source using a first SRWC chipset in a gateway module in the vehicle; in response to detecting the wireless source with the first SRWC chipset, triggering a second SRWC chipset in the gateway module to wake-up by exiting a POWER OFF mode, wherein the first and second SRWC chipsets are configured to communicate according to different SRWC protocols; and in response to the triggering step: exiting the POWER OFF mode at the second SRWC chipset; and receiving content data from the wireless source at the gateway module via the second SRWC chipset.