Abstract:
This document describes methodologies for mobile camera color management. These techniques and apparatuses enable improved consistency of color quality, faster color tuning process, adaptability to new light sources, and easier adoption on the production line than many conventional color management techniques.
Abstract:
The various implementations described herein include methods, devices, and systems for calibrating LED(s). In one aspect, a method includes: (1) obtaining a desired color value for each LED of a plurality of LEDs to be calibrated; (2) obtaining image information from an image sensor, the image information corresponding to operation of the plurality of LEDs; and (3) generating calibration information for each LED of the plurality of LEDs based on the desired color value for the LED and the obtained image information.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, relating to testing three-dimensional imaging systems. In some implementations, a system includes a mount for a three-dimensional camera, a mount for a calibration target, and a rail to which the mount for the calibration target is coupled. The movement of the mount for the calibration target is constrained to the direction extending along the rail. The system includes a processing device having logic that receives a reading from a particular three-dimensional camera coupled to the mount for the three-dimensional camera. The reading includes a distance from the three-dimensional camera to a particular calibration target coupled to the mount for the calibration target. The logic receives a measurement of an actual distance from the particular three-dimensional camera to the particular calibration target. The logic then provides measurement characteristics of the particular three-dimensional camera.
Abstract:
Systems, methods and media for remote control of electronic devices using a proximity sensor are provided. In some implementations, the system comprises: a proximity sensor comprising an infrared emitter and an infrared detector, wherein the proximity sensor is configured to emit infrared light having specific properties using the infrared emitter and sense reflected light having the specific properties using the infrared detector to determine proximity of the sensor to an object; and a hardware processor that is programmed to: receive a user instruction to cause a command to be issued to control an electronic device; determine a code to be transmitted that corresponds to the command from a plurality of codes associated with the electronic device; and provide at least one signal to the proximity sensor to cause the proximity sensor to emit an infrared signal corresponding to the code instead of emitting infrared light having the specific properties.
Abstract:
Systems, methods and media for remote control of electronic devices using a proximity sensor are provided. In some implementations, the system comprises: a proximity sensor comprising an infrared emitter and an infrared detector, wherein the proximity sensor is configured to emit infrared light having specific properties using the infrared emitter and sense reflected light having the specific properties using the infrared detector to determine proximity of the sensor to an object; and a hardware processor that is programmed to: receive a user instruction to cause a command to be issued to control an electronic device; determine a code to be transmitted that corresponds to the command from a plurality of codes associated with the electronic device; and provide at least one signal to the proximity sensor to cause the proximity sensor to emit an infrared signal corresponding to the code instead of emitting infrared light having the specific properties.
Abstract:
Certain implementations of the disclosed technology may include methods and apparatuses for calculating an optimal lens position for a camera utilizing curve-fitting auto-focus. According to an example implementation, a method (900) is provided. The method (900) may include calculating modulation transfer function values for first and second test image frames associated with respective first and second lens positions of a camera (902, 904). The method may also include identifying, from a database including a plurality of predetermined modulation transfer function curves associated with the camera, a particular predetermined modulation transfer function curve based on the first and second modulation transfer function values (906). The method may also include calculating an optimal lens position for the camera based on the identified particular predetermined modulation transfer function curve (908).
Abstract:
An apparatus is described that includes a pixel array having time-of-flight pixels. The apparatus also includes clocking circuitry coupled to the time-of-flight pixels. The clocking circuitry comprises a multiplexer between a multi-phase clock generator and the pixel array to multiplex different phased clock signals to a same time-of-flight pixel. The apparatus also includes an image signal processor to perform distance calculations from streams of signals generated by the pixels at a first rate that is greater than a second rate at which any particular one of the pixels is able to generate signals sufficient to perform a single distance calculation.
Abstract:
A system and method are provided for detecting motion and calculating distance to a moving object by a sensor device. The sensor device includes: a transducer device configured to transmit a first signal and receive a second signal, wherein the second signal comprises a reflection from a moving object; a motion processing unit configured to receive and process data corresponding to the second signal, and, based on the processing corresponding to the second signal, the transducer device is configured to transmit a third signal and receive a reflected fourth signal; and the distance processing unit is configured to process the data corresponding to the fourth signal to determine a distance between the sensor device and the moving object, wherein the distance processing unit is turned off when the motion processing unit is processing data and vice versa.
Abstract:
An example technique of configuring a universal remote control device includes receiving a plurality of transmitted infrared signals during a time period; storing the plurality of infrared signals and a time of each of the plurality of infrared signals; detecting a plurality of appliance events during the time period; storing the plurality of appliance events and a time of each of the plurality of appliance events; correlating the plurality of infrared signals with the plurality of appliance events based on the time of each of the plurality of infrared signals and the time of each of the plurality of appliance events; and defining configuration information for a universal remote control device based on the correlating of the plurality of infrared signals with the plurality of appliance events.
Abstract:
Systems, methods and media for remote control of electronic devices using a proximity sensor are provided. In some implementations, the system comprises: a proximity sensor comprising an infrared emitter and an infrared detector, wherein the proximity sensor is configured to emit infrared light having specific properties using the infrared emitter and sense reflected light having the specific properties using the infrared detector to determine proximity of the sensor to an object; and a hardware processor that is programmed to: receive a user instruction to cause a command to be issued to control an electronic device; determine a code to be transmitted that corresponds to the command from a plurality of codes associated with the electronic device; and provide at least one signal to the proximity sensor to cause the proximity sensor to emit an infrared signal corresponding to the code instead of emitting infrared light having the specific properties.