Abstract:
A circuit card assembly includes a first printed circuit board and a first electronic component mounted on the first printed circuit board. A heat transfer assembly is coupled to the first printed circuit board. The heat transfer assembly includes a first plate extending adjacent the first printed circuit board and a second plate extending adjacent the first plate. At least one of the first plate and the second plate includes an accommodation feature to accommodate the first electronic component. The heat transfer assembly further includes a first set of heat pipes between the first plate and the second plate. The first set of heat pipes is configured to remove heat from the first electronic component. At least one heat pipe of the first set of heat pipes extends adjacent the accommodation feature.
Abstract:
A circuit card assembly is provided. The assembly includes a first printed circuit board, at least one electronic component mounted on the first printed circuit board at a predetermined location, a frame coupled to the first printed circuit board, and a heat transfer assembly coupled to the frame. The heat transfer assembly includes a first plate extending over at least a portion of the first printed circuit board, a heat pipe coupled to the first plate, and a thermally conductive member positioned between the at least one electronic component and the heat pipe. The thermally conductive member is selectively mounted at predetermined locations along the first plate based on the predetermined location of the at least one electronic component.
Abstract:
A dielectric fluid includes a first liquid having first dielectric constant and conductivity values. The dielectric fluid also includes a second liquid having second dielectric constant and conductivity values. The first dielectric constant value is greater than the second dielectric constant value and the second electrical conductivity value is less than the first electrical conductivity value. The first and second liquids form an immiscible mixture that has third dielectric constant and conductivity values between the first and second dielectric constant values and the first and second electrical conductivity values, respectively. The first liquid forms a high conductivity phase representative of the first conductivity value, and the second liquid forms a low conductivity phase representative of the second conductivity value. The low conductivity phase is continuous the high conductivity phase is a plurality of droplets non-homogeneously dispersed within, and separated by, the continuous low conductivity phase.
Abstract:
According to one embodiment, a thermal management system is provided that includes at least one chassis frame configured to minimize a thermal spreading resistance of the thermal management system. The chassis frame included at least one chassis body, at least one thermal skeleton embedded into the chassis body, and a working fluid contained within the thermal skeleton and used to dissipate heat from the chassis body.
Abstract:
A circuit card assembly is provided. The circuit card assembly includes a printed circuit board, at least one electronic component mounted on the printed circuit board, and a frame coupled to the printed circuit board such that the electronic component is disposed between the printed circuit board and the frame. The circuit card assembly also includes a heat transfer device coupled to the frame. The heat transfer device has a heat pipe disposed at least in part between the frame and the printed circuit board. The circuit card assembly further includes a pivotable brace biasing the heat pipe toward the electronic component to facilitate cooling the electronic component.
Abstract:
Methods and apparatuses for cooling an electronic device assembly having a heat producing are described. An electronic device assembly includes a heat dissipation member and a dielectric two-phase heat transfer device. The dielectric heat transfer device has an evaporator region thermally attached to a hot region of the heat producing component and a condenser region thermally attached to the heat dissipation member. The dielectric two-phase heat transfer device is fabricated from a dielectric material.
Abstract:
A component for an electrical machine is disclosed. The component is a stator and/or a rotor. The component includes a core, a magnetic field-generating component, and an oscillating heat pipe assembly. The core includes a plurality of slots and the magnetic field-generating component is disposed in at least one slot of the plurality of slots. The oscillating heat pipe assembly is disposed in the core and the at least one slot of the plurality of slots. The oscillating heat pipe assembly is in contact with the core and the magnetic field-generating component. The oscillating heat pipe assembly includes a dielectric material, and where the oscillating heat pipe assembly has an in-plane thermal conductivity higher than a through-plane thermal conductivity.
Abstract:
A reusable phase-change thermal interface structure having a metal based foam and a fusible metal based alloy is provided. In a solid phase of the fusible metal based alloy the fusible metal based alloy is disposed at least in a portion of the metal based foam. Further, in a liquid phase of the fusible metal based alloy the fusible metal based alloy is disposed at least on a portion of one or more outer surfaces of the metal based foam.
Abstract:
A heat transfer device filled with a working fluid, includes a casing and a wick disposed within the casing. The wick includes a first sintered layer, a second sintered layer, and a third sintered layer. The first sintered layer is disposed proximate to an inner surface of the casing and the second sintered layer is disposed on the first sintered layer. The second sintered layer includes a first set of 3-dimensional sintered projections and a second set of 3-dimensional sintered projections disposed along a portion of the wick. Further, the third sintered layer is disposed on at least a portion of the second sintered layer. The heat transfer device includes at least one first sintered particle of the first sintered layer, which is smaller in size than at least one second pore of the second sintered layer.
Abstract:
Methods and apparatuses for cooling an electronic device assembly having a heat producing are described. An electronic device assembly includes a heat dissipation member and a dielectric two-phase heat transfer device. The dielectric heat transfer device has an evaporator region thermally attached to a hot region of the heat producing component and a condenser region thermally attached to the heat dissipation member. The dielectric two-phase heat transfer device is fabricated from a dielectric material.