摘要:
An emitter package comprising a light emitting diode (LED) mounted to the surface of a submount with the surface having a first meniscus forming feature around the LED. A matrix encapsulant is included on the surface and covering the LED. The outer edge of the matrix encapsulant adjacent the surface is defined by the meniscus forming feature and the encapsulant forms a substantially dome-shaped covering over said LED. A method for manufacturing an LED package by providing a body with a surface having a first meniscus holding feature. An LED is mounted to the surface with the meniscus holding feature around the LED. A liquid matrix encapsulant is introduced over the LED and the surface, the first meniscus holding feature holding the liquid matrix encapsulant in a dome-shape over the LED. The matrix encapsulant is then cured.
摘要:
Methods of packaging a semiconductor light emitting device in a reflector having a moat positioned between a lower and an upper sidewall thereof, the upper and lower sidewall defining a reflective cavity, include dispensing encapsulant material into the reflective cavity including the light emitting device therein to cover the light emitting device and to form a convex meniscus of encapsulant material in the reflective cavity extending from an edge of the moat without contacting the upper sidewall of the reflector. The encapsulant material in the reflective cavity is cured. Packaged semiconductor light emitting devices and reflectors for the same are also provided.
摘要:
An emitter package comprising a light emitting diode (LED) mounted to the surface of a submount with the surface having a first meniscus forming feature around the LED. A matrix encapsulant is included on the surface and covering the LED. The outer edge of the matrix encapsulant adjacent the surface is defined by the meniscus forming feature and the encapsulant forms a substantially dome-shaped covering over said LED. A method for manufacturing an LED package by providing a body with a surface having a first meniscus holding feature. An LED is mounted to the surface with the meniscus holding feature around the LED. A liquid matrix encapsulant is introduced over the LED and the surface, the first meniscus holding feature holding the liquid matrix encapsulant in a dome-shape over the LED. The matrix encapsulant is then cured.
摘要:
Semiconductor light emitting devices are fabricated by placing a suspension including phosphor particles suspended in solvent on at least a portion of a light emitting surface of a semiconductor light emitting element, and evaporating at least some of the solvent to cause the phosphor particles to deposit on at least a portion of the light emitting surface. A coating including phosphor particles is thereby formed on at least a portion of the light emitting surface. Particles other than phosphor also may be coated and solutions wherein particles are dissolved in solvent also may be used.
摘要:
Methods of packaging a semiconductor light emitting device positioned in a reflective cavity are provided. A first quantity of encapsulant material is dispensed into the reflective cavity including the light emitting device therein and the first quantity of encapsulant in the reflective cavity is cured. A second quantity of encapsulant material is dispensed onto the cured first quantity of encapsulant material. A lens is positioned in the reflective cavity on the dispensed second quantity of encapsulant material. The dispensed second quantity of encapsulant material is cured to attach the lens in the reflective cavity.
摘要:
Reflectors for a semiconductor light emitting device include a lower sidewall portion defining a reflective cavity. A substantially horizontal shoulder portion extends outwardly from the sloped lower sidewall portion. The horizontal shoulder portion has a circumferentially extending moat formed therein. An upper sidewall portion extends upwardly from the horizontal shoulder portion.
摘要:
Packaged semiconductor light emitting device are provided including a reflector having a lower sidewall portion defining a reflective cavity. A light emitting device is positioned in the reflective cavity. A first quantity of cured encapsulant material having a first index of refraction is provided in the reflective cavity including the light emitting device. A second quantity of cured encapsulant material having a second index of refraction, different from the first index of refraction, is provided on the first quantity of cured encapsulant material. The first and second index of refraction are selected to provide a buried lens in the reflective cavity.
摘要:
Semiconductor light emitting devices are fabricated by placing a suspension including phosphor particles suspended in solvent on at least a portion of a light emitting surface of a semiconductor light emitting element, and evaporating at least some of the solvent to cause the phosphor particles to deposit on at least a portion of the light emitting surface. A coating including phosphor particles is thereby formed on at least a portion of the light emitting surface. Particles other than phosphor also may be coated and solutions wherein particles are dissolved in solvent also may be used.
摘要:
Methods of packaging a semiconductor light emitting device include dispensing a first quantity of encapsulant material into a cavity including the light emitting device. The first quantity of encapsulant material in the cavity is treated to form a hardened upper surface thereof having a shape. A luminescent conversion element is provided on the upper surface of the treated first quantity of encapsulant material. The luminescent conversion element includes a wavelength conversion material and has a thickness at a middle region of the cavity greater than proximate a sidewall of the cavity.
摘要:
Methods of packaging a semiconductor light emitting device include dispensing a first quantity of encapsulant material into a cavity including the light emitting device. The first quantity of encapsulant material in the cavity is treated to form a hardened upper surface thereof having a selected shape. A luminescent conversion element is provided on the upper surface of the treated first quantity of encapsulant material. The luminescent conversion element includes a wavelength conversion material and has a thickness at a middle region of the cavity greater than proximate a sidewall of the cavity.