摘要:
Genes encoding Class II EPSPS enzymes are disclosed. The genes are useful in producing transformed bacteria and plants which are tolerant to glyphosate herbicide. Class II EPSPS genes share little homology with known, Class I EPSPS genes, and do not hybridize to probes from Class I EPSPS's. The Class II EPSPS enzymes are characterized by being more kinetically efficient than Class I EPSPS's in the presence of glyphosate. Plants transformed with Class II EPSPS genes are also disclosed as well as a method for selectively controlling weeds in a planted transgenic crop field.
摘要:
Genes encoding Class II EPSPS enzymes are disclosed. The genes are useful in producing transformed bacteria and plants which are tolerant to glyphosate herbicide. Class II EPSPS genes share little homology with known, Class I EPSPS genes, and do not hybridize to probes from Class I EPSPS's. The Class II EPSPS enzymes are characterized by being more kinetically efficient than Class I EPSPS's in the presence of glyphosate. Plants transformed with Class II EPSPS genes are also disclosed as well as a method for selectively controlling weeds in a planted transgenic crop field.
摘要:
Genes encoding Class II EPSPS enzymes are disclosed. The genes are useful in producing transformed bacteria and plants which are tolerant to glyphosate herbicide. Class II EPSPS genes share little homology with known, Class I EPSPS genes, and do not hybridize to probes from Class I EPSPS's. The Class II EPSPS enzymes are characterized by being more kinetically efficient than Class I EPSPS's in the presence of glyphosate. Plants transformed with Class II EPSPS genes are also disclosed as well as a method for selectively controlling weeds in a planted transgenic crop field.
摘要:
Genes encoding Class II EPSPS enzymes are disclosed. The genes are useful in producing transformed bacteria and plants which are tolerant to glyphosate herbicide. Class II EPSPS genes share little homology with known, Class I EPSPS genes, and do not hybridize to probes from Class I EPSPS's. The Class II EPSPS enzymes are characterized by being more kinetically efficient than Class I EPSPS's in the presence of glyphosate. Plants transformed with Class II EPSPS genes are also disclosed as well as a method for selectively controlling weeds in a planted transgenic crop field.
摘要:
Genes encoding Class II EPSPS enzymes are disclosed. The genes are useful in producing transformed bacteria and plants which are tolerant to glyphosate herbicide. Class II EPSPS genes share little homology with known, Class I EPSPS genes, and do not hybridize to probes from Class I EPSPS's. The Class II EPSPS enzymes are characterized by being more kinetically efficient than Class I EPSPS's in the presence of glyphosate. Plants transformed with Class II EPSPS genes are also disclosed as well as a method for selectively controlling weeds in a planted transgenic crop field.
摘要:
Genes encoding a glyphosate oxidoreductase enzyme are disclosed. The genes are useful in producing transformed bacteria and plants which degrade glyphosate herbicide as well as crop plants which are tolerant to glyphosate herbicide.
摘要:
A method of producing plant products containing modified starch content, including higher ratios of amylose to amylopectin, increase in intermediate material, or amylopectin having fewer branches or altered branching pattern. Also provided are DNA constructs and transformed plant cells useful in that method. The preferred method uses isoamylase from a Flavobacterium sp., more preferably in combination with a gene encoding ADPglucose pyrophosphorylase. Also disclosed are the gene from Flavobacterium sp. and transformed bacterial and plant cells containing a derivative thereof.
摘要:
Promoters for enhanced expression of ADPglucose pyrophosphorylase in potato tubers and fruits such as tomato; methods of using them; DNA molecules, plant cells and plants containing them. A method of decreasing the oil content of seeds by expression of ADPglucose pyrophosphorylase.
摘要:
Introducing sucrose phosphorylase activity into plants by transformation with a gene for the enzyme increases the rate of sucrose hydrolysis, leading to increased starch, oil, and protein levels. The preferred gene is from Streptococcus mutans. Surprisingly, in potatoes transformed to express this gene in tubers, reduced bruise discoloration susceptibility and increased uniformity of starch deposition throughout the tuber are achieved.
摘要:
The invention relates to a method of improving the quality of potatoes stored at reduced temperatures and a method of prolonging dormancy of stored potato tubers, by increasing the level of ADPglucose pyrophosphorylase enzyme activity within the potato tuber during storage at ambient or reduced temperatures. Novel DNA molecules, plant cells, and potato plants are provided which contain the gene for the ADPglucose pyrophosphorylase enzyme.