摘要:
Substantially or roughly spherical micellar structures useful in the formation of nanoporous materials by templating are disclosed. A roughly spherical micellar structure is formed by organization of one or more spatially unsymmetric organic amphiphilic molecules. Each of those molecules comprises a branched moiety and a second moiety. The branched moiety can form part of either the core or the surface of the spherical micellar structure, depending on the polarity of the environment. The roughly spherical micellar structures form in a thermosetting polymer matrix. They are employed in a templating process whereby the amphiphilic molecules are dispersed in the polymer matrix, the matrix is cured, and the porogens are then removed, leaving nanoscale pores.
摘要:
A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
摘要:
A nanoporous material exhibiting a lamellar structure is disclosed. The material comprises three or more substantially parallel sheets of an organosilicate material, separated by highly porous spacer regions. The distance between the centers of the sheets lies between 1 nm and 50 nm. The highly porous spacer regions may be substantially free of condensed material. For the manufacture of such materials, a process is disclosed in which matrix non-amphiphilic polymeric material and templating polymeric material are dispersed in a solvent, where the templating polymeric material includes a polymeric amphiphilic material. The solvent with the polymeric materials is distributed onto a substrate. Organization is induced in the templating polymeric material. The solvent is removed, leaving the polymeric materials in place. The matrix polymeric material is cured, forming a lamellar structure.
摘要:
A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
摘要:
A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
摘要:
A nanoporous material exhibiting a lamellar structure is disclosed. The material comprises three or more substantially parallel sheets of an organosilicate material, separated by highly porous spacer regions. The distance between the centers of the sheets lies between 1 nm and 50 nm. The highly porous spacer regions may be substantially free of condensed material. For the manufacture of such materials, a process is disclosed in which matrix non-amphiphilic polymeric material and templating polymeric material are dispersed in a solvent, where the templating polymeric material includes a polymeric amphiphilic material. The solvent with the polymeric materials is distributed onto a substrate. Organization is induced in the templating polymeric material. The solvent is removed, leaving the polymeric materials in place. The matrix polymeric material is cured, forming a lamellar structure.
摘要:
A composition of matter and a structure fabricated using the composition. The composition comprising: a resin; polymeric nano-particles dispersed in the resin, each of the polymeric nano-particle comprising a multi-arm core polymer and pendent polymers attached to the multi-arm core polymer, the multi-arm core polymer immiscible with the resin and the pendent polymers miscible with the resin; and a solvent, the solvent volatile at a first temperature, the resin cross-linkable at a second temperature, the polymeric nano-particle decomposable at a third temperature, the third temperature higher than the second temperature, the second temperature higher than the first temperature, wherein a thickness of a layer of the composition shrinks by less than about 3.5% between heating the layer from the second temperature to the third temperature.
摘要:
A nanoporous material exhibiting a lamellar structure is disclosed. The material comprises three or more substantially parallel sheets of an organosilicate material, separated by highly porous spacer regions. The distance between the centers of the sheets lies between 1 nm and 50 nm. The highly porous spacer regions may be substantially free of condensed material. For the manufacture of such materials, a process is disclosed in which matrix non-amphiphilic polymeric material and templating polymeric material are dispersed in a solvent, where the templating polymeric material includes a polymeric amphiphilic material. The solvent with the polymeric materials is distributed onto a substrate. Organization is induced in the templating polymeric material. The solvent is removed, leaving the polymeric materials in place. The matrix polymeric material is cured, forming a lamellar structure.
摘要:
Substantially or roughly spherical micellar structures useful in the formation of nanoporous materials by templating are disclosed. A roughly spherical micellar structure is formed by organization of one or more spatially unsymmetric organic amphiphilic molecules. Each of those molecules comprises a branched moiety and a second moiety. The branched moiety can form part of either the core or the surface of the spherical micellar structure, depending on the polarity of the environment. The roughly spherical micellar structures form in a thermosetting polymer matrix. They are employed in a templating process whereby the amphiphilic molecules are dispersed in the polymer matrix, the matrix is cured, and the porogens are then removed, leaving nanoscale pores.
摘要:
Substantially or roughly spherical micellar structures useful in the formation of nanoporous materials by templating are disclosed. A roughly spherical micellar structure is formed by organization of one or more spatially unsymmetric organic amphiphilic molecules. Each of those molecules comprises a branched moiety and a second moiety. The branched moiety can form part of either the core or the surface of the spherical micellar structure, depending on the polarity of the environment. The roughly spherical micellar structures form in a thermosetting polymer matrix. They are employed in a templating process whereby the amphiphilic molecules are dispersed in the polymer matrix, the matrix is cured, and the porogens are then removed, leaving nanoscale pores.