Abstract:
The invention relates to an apparatus for supplying fuel for acceleration during the warm-up phase of an internal combustion engine. The fuel supplied downstream of an arbitrarily actuatable throttle butterfly valve located in the induction tube of the engine being in addition to the fuel supplied by a fuel supply system. There is disclosed a motion control means which is associated with the butterfly valve and actuated thereby upon opening of this valve. The motion control means further includes electrical contacts disposed in an electrical circuit, electromagnet means in the circuit and other valve means arranged to be controlled by said electromagnet for feeding fuel into said induction tube downstream of said butterfly valve upon closing of said contacts. There are several variants of the control means; one constituted by a flexible bellows and the other by a dash pot.
Abstract:
In each fuel injection valve forming part of a fuel injection apparatus and associated with an internal combustion engine, there is disposed an electric heater which transmits heat to the fuel by contact-type heat exchange. The heat output of each heater is controlled by a device which processes input signals representing different engine variables.
Abstract:
A fuel injection system for mixture-compressing, externally ignited internal combustion engines of the type employing continuous fuel injection with an induction tube. A measuring member, as well as an arbitrarily actuatable throttle butterfly valve are disposed in sequence within the induction tube. A fuel metering and quantity distribution valve assembly is controlled by the measuring member in proportion to air flow rate. Pressurized fluid, preferably fuel, provides a restoring force for the measuring member, via a control pressure circuit. At least one pressure control valve is provided for controlling the pressure in the control circuit in dependence on motor parameters. A heatable control element, operating in dependence on temperature, forms part of the control valve. The heatable control element, which may be a bimetallic spring, acts in opposition to the force of another spring. Instrumentalities are provided for reducing the pressure of the pressurized fluid in the control pressure circuit during the warm-up phase when the engine is suddenly accelerated.
Abstract:
A fuel injection pump for internal combustion engines, in particular an in-line injection pump for Diesel engines, is proposed having an injection quantity governor and an electrically driven feed pump, in which in order to assure an emergency shutoff in the event of a malfunction of the injection quantity governor, a check valve, the forward flow direction of which is toward a suction chamber filled with fuel by the feed pump, is disposed between the pressure-side outlet of the feed pump and the suction chamber. An emergency shutoff device responding to a malfunction switches off the feed pump drive, so that because of the lack of feed pressure the check valve closes and blocks off the suction chamber. The engine comes to a stop, as soon as a partial vacuum is established in the suction chamber, which occurs as soon as several revolutions later.
Abstract:
A method and apparatus for correcting the fuel quantity delivered by a fuel injection apparatus to an internal combustion engine, in particular for correcting the full-load fuel quantity per stroke, whereby a control value corresponding to the fuel injection quantity per time unit is formed and is converted into a control value corresponding to the fuel injection quantity by means of division of a value dependent on the rpm, the injection quantity per stroke being corrected by means of an adjustment of the fuel quantity control device of the fuel injection apparatus in accordance with the deviation of this converted control value from a set-point value.
Abstract:
A fuel injection system for controlling a mixture-compressing, externally ignited internal combustion engine which includes a fuel apportionment valve controllable by means of an air flow rate meter, with the fuel pressure upstream of the apportionment point being variable by means of a pressure regulating valve having a movable valve member which separates two chambers connected by a throttle point, and wherein the fuel pressure upstream of the fuel apportionment valve is exerted on one side of the movable valve member, and the force of a spring and a control pressure, which is variable by means of a control element in accordance with operating characteristics of the internal combustion engine, are exerted on the other side of the movable valve member to thereby intervene easily in order to vary the fuel-air mixture using small control forces.
Abstract:
A fuel injection device for mixture compressing, externally ignited internal combustion engines, which serves to meter the fuel proportional to the intake air and aspirates the air-fuel mixture. The fuel injection device includes an air flow rate meter located downstream of a butterfly valve in the air induction tube. The bearing shaft of the air flow rate meter includes a fuel metering valve which can be activated directly by the air flow rate meter. To correct the air-fuel mixture because of air density downstream of the butterfly valve, the fuel injection device is so arranged, that when the butterfly valve is in its idling and full load positions a rich air-fuel mixture can be regulated, and when the butterfly valve is in a partial load position a lean mixture can be regulated.
Abstract:
A regulating device used with the fuel injection system of an internal combustion engine, for regulating the proportions of the operating mixtures of the engine. The regulating device is embodied as a pump which is incorporated into the existing fuel injection system. The pump has a chamber within which a piston is displaceable. This piston is coupled with the fuel rate adjusting member of the fuel injection pump of the fuel injection system, and is displaced in accordance with the adjusted position of the fuel rate adjusting member. The pump is also connected with the throttle plate of the fuel injection system located in the induction tube of the engine. By reason of these connections, rapid adjustment movements of the fuel rate adjusting member can be effectively translated to a proper adjustment of the throttle plate without the delay found in presently known regulating devices.
Abstract:
An air flow rate sensor, located in the indication tube of an internal combustion engine, displaces a fuel metering slide, thereby changing the fuel flow and the fuel pressure gradient. This pressure gradient is applied to a differential pressure valve which actuates a fuel flow control throttle until the pressure gradient has been restored to a nominal value, corresponding to a desired fuel-air ratio.In a variant embodiment, an arbitrary change in the metered out fuel results in a fuel pressure gradient which is used to reset an air-flow control member until the nominal value of the pressure gradient has been restored, corresponding to a desired fuel-air ratio.
Abstract:
A fuel injection system for an internal combustion engine includes an air flow responsive throttle element in the induction tube which is subject to an adjustable elastic restoring force. The throttle element is attached to a bushing which rotates about a pivotal shaft mounted within the induction tube. A control slot in the bushing is covered to varying extent by a control edge on the pivotal shaft so that fuel which enters a groove in the shaft is metered out according to the relative rotation of shaft and bushing. The relative position of the throttle can be adjusted by a pressure cell.