摘要:
A method for preparing transparent mesostructured inorganic/block-copolymer composites or inorganic porous solids containing optically responsive species with selective optical, optoelectronic, and sensing properties resulting therefrom. Mesoscopically organized inorganic/block copolymer composites doped with dyes or complexes are prepared for use as optical hosts, chemical/physical/biological sensors, photochromic materials, optical waveguides, tunable solid-state lasers, or optoelectronic devices. The materials can be processed into a variety of different shapes, such as films, fibers, monoliths, for novel optical and sensing applications.
摘要:
Mesoscopically ordered, hydrothermally stable metal oxide-block copolymer composite or mesoporous materials are described herein that are formed by using amphiphilic block polymers which act as structure directing agents for the metal oxide in a self-assembling system.
摘要:
Mesoscopically ordered, hydrothermally stable metal oxide-block copolymer composite or mesoporous materials are described herein that are formed by using amphiphilic block polymers which act as structure directing agents for the metal oxide in a self-assembling system.
摘要:
Mesoscopically ordered, hydrothermally stable metal oxide-block copolymer composite or mesoporous materials are described herein that are formed by using amphiphilic block copolymers which act as structure directing agents for the metal oxide in a self-assembling system.
摘要:
Novel membranes based on functionalized porous inorganic materials for ion exchange and conduction have been synthesized and characterized. The preparation procedure of these new membranes involves the synthesis of porous inorganic films, into which hydrophilic moieties are incorporated along the interior pore surfaces of the inorganic framework. Ion-conducting species are grafted into the pores via reactions with surface groups of the inorganic framework to allow for ion transport through the pore network.
摘要:
A material and method for producing mesostructured materials with multiple functionalities that are independently adjustable and collectively optimizable is provided. The method uses a series of discrete synthesis steps under otherwise mutually incompatible conditions, e.g., from acidic, alkaline, and/or non-aqueous solutions, allows different functionalities to be introduced to the materials and optimized. To illustrate the method, cubic mesoporous silica films were prepared from strongly acidic solutions that were separately functionalized under highly alkaline conditions to incorporate hydrophilic aluminosilica moieties and under non-aqueous conditions to introduce perfluorosulfonic-acid surface groups.
摘要:
A material and method for producing mesostructured materials with multiple functionalities that are independently adjustable and collectively optimizable is provided. The method uses a series of discrete synthesis steps under otherwise mutually incompatible conditions, e.g., from acidic, alkaline, and/or non-aqueous solutions, allows different functionalities to be introduced to the materials and optimized. To illustrate the method, cubic mesoporous silica films were prepared from strongly acidic solutions that were separately functionalized under highly alkaline conditions to incorporate hydrophilic aluminosilica moieties and under non-aqueous conditions to introduce perfluorosulfonic-acid surface groups.
摘要:
Mesostructured inorganic-organic materials, in the form of patterned films, monoliths, and fibers, can be prepared with controllable orientational ordering over macroscopic length scales. They are synthesized by controlling solvent removal rates across material interfaces, in conjunction with the rates of surfactant self-assembly and inorganic cross-linking and surface interactions. A method for controlling the rates and directions of solvent removal from a heterogeneous material synthesis mixture that allows the nucleation and directional alignment of self-assembling mesostructures to be controlled during synthesis is disclosed. The aligned mesostructured inorganic-organic materials and mesoporous inorganic or carbon materials can be prepared in the form of patterned films, monoliths, and fibers with controllable orientational ordering. Such materials possess anisotropic structural, mechanical, optical, reaction, or transport properties that can be exploited for numerous applications in opto-electronics, separations, fuel cells, catalysis, MEMS/microfluidics, for example.
摘要:
Methods of controlling orientational ordering in self-assembled materials are described. These methods include controlling the nucleation rate and growth of block-copolymer-templated silica domains to yield macroscopically aligned mesostructured materials, and forming patterned mesostructured films or monoliths with control over the direction of alignment of a hexagonally-packed, block-copolymer-directed mesostructure across macroscopic lengths scales are described. Self-assembled materials with controlled orientational ordering are described, including those that contain a surfactant or block-copolymer species, and materials that include an organic (e.g., resin) or inorganic (e.g., silica or titania) network-forming component.
摘要:
Methods of forming an electrically-conductive mesoporous carbon structure with interconnected pores or highly interconnected pores, and the resulting structures are described. The structure is formed by providing a mesoporous template, filling the mesopores with an organic precursor, polymerizing the organic precursor, pyrolyzing the polymerized organic precursor, and etching away the template.