Abstract:
A microfluoroscope has a source of soft x-rays and a solid immersion lens including a plano surface. There is means for placing a sample in close proximity to the plano surface so that an x-ray absorption shadowgraph of the sample is projected onto the plano surface by the source of soft x-rays. A scintillator on the solid immersion lens plano surface produces fluorescent light from soft x-rays passing through the sample. An optical microscope is used for viewing through the solid immersion lens the fluorescent light from the scintillator corresponding to the x-ray absorption shadowgraph of the sample. A microfluoroscope is also disclosed which includes a source of soft x-rays, a fluorescent screen placed at a plane to receive x-rays and means for placing a sample in close proximity to the plane so that an x-ray absorption shadowgraph of the sample is projected onto the fluorescent screen. A nanochannel mask placed between the fluorescent screen and the sample for limiting x-rays reaching the fluorescent screen to a periodic matrix of nanochanneled beams. A computer system combines all the discrete images at each raster position into a composite image representing the x-ray absorption shadowgraph of the entire sample.
Abstract:
A plasma source of soft x-rays provides the illumination for a microfluoroscope. In general, an x-ray relay optic collects part of the diverging plasma radiation and redirects it to a distant plane. At that plane, the fine-grained or grainless fluorescent screen of a microfluoroscope is placed to receive the radiation. A specimen is placed in direct contact with the screen, or in very close proximity, so that its x-ray shadow is projected onto the screen. The screen is very thin and transparent to visible or ultraviolet light so that a high-numerical-aperture optical microscope objective can closely approach and view the screen from the opposite side. The optical microscope views the fluorescent light emitted by the screen, which corresponds to the x-ray absorption shadow of the specimen. In general, a very thin, x-ray transparent vacuum window is used to separate the specimen, fluorescent screen, and microscope from the vacuum of the plasma source. Thin-film filters and/or monochromator devices are used to limit the wavelengths of soft x-rays which reach the fluorescent screen to the desired energy range. The use of the apparatus and process occurs with either a separate instrument or as an add-on feature to a conventional optical microscope.
Abstract:
A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.
Abstract:
A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.
Abstract:
A plurality of glass or metal wires are precisely etched to form the desired shape of the individual channels of the final polycapillary optic. This shape is created by carefully controlling the withdrawal speed of a group of wires from an etchant bath. The etched wires undergo a subsequent operation to create an extremely smooth surface. This surface is coated with a layer of material which is selected to maximize the reflectivity of the radiation being used. This reflective surface may be a single layer of material, or a multilayer coating for optimizing the reflectivity in a narrower wavelength interval. The collection of individual wires is assembled into a close-packed multi-wire bundle, and the wires are bonded together in a manner which preserves the close-pack configuration, irrespective of the local wire diameter. The initial wires are then removed by either a chemical etching procedure or mechanical force. In the case of chemical etching, the bundle is generally segmented by cutting a series of etching slots. Prior to removing the wire, the capillary array is typically bonded to a support substrate. The result of the process is a bundle of precisely oriented radiation-reflecting hollow channels. The capillary optic is used for efficiently collecting and redirecting the radiation from a source of radiation which could be the anode of an x-ray tube, a plasma source, the fluorescent radiation from an electron microprobe, a synchrotron radiation source, a reactor or spallation source of neutrons, or some other source.
Abstract:
A screening tool and method for screening cryogenic electron microscopy (cryo-EM) sample grids using vacuum ultraviolet (VUV) illumination in two configurations is described. First configuration directly images cryo-EM grids using essentially bright-field optical microscopy, but employing VUV wavelengths and specialized VUV optics. Second configuration converts transmitted VUV radiation from the cryo-EM grid to visible or near-UV light with a scintillator positioned in very close proximity to the grid. The resultant luminescent high-resolution shadow image is viewed using more conventional microscope optics. In both configurations, imaging of individual micron-scale grid holes is possible to determine ice thickness and quality from the optical absorption of ultrathin vitrified water layers with a precision of a few nanometers. Longer wavelengths can be used to independently view protein concentration and distribution within the ice layer. This screening tool greatly increases yield of high-quality grids before cryo-EM analysis and is compatible with Single Particle Analysis (SPA) and other cryo-EM methods including cryo-electron Tomography (cryo-ET) and microcrystal electron diffraction (MicroED).
Abstract:
Techniques are disclosed for stabilizing soft specimen traditionally considered too fragile for APT instruments. These specimens include biological samples, polymers and other fragile materials. For this purpose, a protective structure is disclosed that surrounds the sides of the specimen by supporting walls while only exposing the very end or terminus of the specimen to the electrostatic field of the APT instrument. The protective structure may take the form of a nanoscale conical grinder which continually machines the specimen to regenerate the terminus of the specimen in-situ. Alternately, the protective structure may take the form of a nanopipette in which the specimen is first frozen before undergoing field evaporation together with the tip of the nanopipette. Heretofore only routinely possible for rigid and hard materials, the design thus extends APT analysis to produce three-dimensional atomic-scale maps of soft specimens.
Abstract:
Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the laser to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.
Abstract:
Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the laser to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.
Abstract:
A capillary optic produced by impression has a mold with an external profile figured for radiation transmission along an axis used as a mandrel for impression. The mold often takes the form of a precisely etched wire. At least one soft plate is used for impressing the mold into the soft plate. The mold is removed from the soft plate to leave a vacant impression figured for radiation transmission in the soft plate along an axis. The impression is then closed to provide for radiation transmission along the axis of the impression. In the most common embodiment, two relatively soft plates having identical compositions with flat and highly polished initial surfaces are used. The impression(s) can be coated with reflective materials. Disclosure of an optical connector and emitter is included.