摘要:
A method is described for the repair of process induced damage sustained by low-k organosilicate dielectrics as a result of reactive ion etch, resist strip, wet clean and CMP operations in a hard mask free integration of these dielectrics into microelectronic interconnect structures incorporating a dielectric cap which is an etch stop and barrier layer. In situ reaction of the damaged regions with a suitable silylation agent just prior to a passivation barrier cap deposition is proposed as the most efficacious means to repair all the damage sustained by the dielectric. Variations of this method which include ex situ rather than in situ silylation are also described for use with hard mask free integration with selective barrier caps.
摘要:
A method of fabricating an interconnect structure on a substrate includes steps of: providing a dielectric with at least one etched opening; filling the at least one etched opening with at least one conductive material; planarizing the conductive material to provide a planarized structure; subjecting the planarized structure to a plasma preclean process; and exposing the planarized structure to a silylating repair agent which is a silane derivative; and forming a dielectric cap layer on the planarized structure.
摘要:
A method for forming crenulated conductors and a device having crenulated conductors includes forming a hardmask layer on a dielectric layer, and patterning the hardmask layer. Trenches are etched in the dielectric layer using the hardmask layer such that the trenches have shallower portions and deeper portions alternating along a length of the trench. A conductor is deposited in the trenches such that crenulated conductive lines are formed having different depths periodically disposed along the length of the conductive line.
摘要:
A selective conductive cap is deposited on exposed metal surfaces of a metal line by electroless plating selective to exposed underlying dielectric surfaces of a metal interconnect structure. A dielectric material layer is deposited on the selective conductive cap and the exposed underlying dielectric layer without a preclean. The dielectric material layer is planarized to form a horizontal planar surface that is coplanar with a topmost surface of the selective conductive cap. A preclean is performed and a dielectric cap layer is deposited on the selective conductive cap and the planarized surface of the dielectric material layer. Because the interface including a surface damaged by the preclean is vertically offset from the topmost surface of the metal line, electromigration of the metal in the metal line along the interface is reduced or eliminated.
摘要:
A hard mask is formed on an interconnect structure comprising a low-k material layer and a metal feature embedded therein. A block polymer is applied to the hard mask layer, self-assembled, and patterned to form a polymeric matrix of a polymeric block component and containing cylindrical holes. The hard mask and the low-k material layer therebelow are etched to form cavities. A conductive material is plated on exposed metallic surfaces including portions of top surfaces of the metal feature to form metal pads. Metal silicide pads are formed by exposure of the metal pads to a silicon containing gas. An etch is performed to enlarge and merge the cavities in the low-k material layer. The metal feature is protected from the etch by the metal silicide pads. An interconnect structure having an air gap and free of defects to surfaces of the metal feature is formed.
摘要:
A selective conductive cap is deposited on exposed metal surfaces of a metal line by electroless plating selective to exposed underlying dielectric surfaces of a metal interconnect structure. A dielectric material layer is deposited on the selective conductive cap and the exposed underlying dielectric layer without a preclean. The dielectric material layer is planarized to form a horizontal planar surface that is coplanar with a topmost surface of the selective conductive cap. A preclean is performed and a dielectric cap layer is deposited on the selective conductive cap and the planarized surface of the dielectric material layer. Because the interface including a surface damaged by the preclean is vertically offset from the topmost surface of the metal line, electromigration of the metal in the metal line along the interface is reduced or eliminated.
摘要:
A hard mask is formed on an interconnect structure comprising a low-k material layer and a metal feature embedded therein. A block polymer is applied to the hard mask layer, self-assembled, and patterned to form a polymeric matrix of a polymeric block component and containing cylindrical holes. The hard mask and the low-k material layer therebelow are etched to form cavities. A conductive material is plated on exposed metallic surfaces including portions of top surfaces of the metal feature to form metal pads. Metal silicide pads are formed by exposure of the metal pads to a silicon containing gas. An etch is performed to enlarge and merge the cavities in the low-k material layer. The metal feature is protected from the etch by the metal silicide pads. An interconnect structure having an air gap and free of defects to surfaces of the metal feature is formed.
摘要:
A hard mask is formed on an interconnect structure comprising a low-k material layer and a metal feature embedded therein. A block polymer is applied to the hard mask layer, self-assembled, and patterned to form a polymeric matrix of a polymeric block component and containing cylindrical holes. The hard mask and the low-k material layer therebelow are etched to form cavities. A conductive material is plated on exposed metallic surfaces including portions of top surfaces of the metal feature to form metal pads. Metal silicide pads are formed by exposure of the metal pads to a silicon containing gas. An etch is performed to enlarge and merge the cavities in the low-k material layer. The metal feature is protected from the etch by the metal silicide pads. An interconnect structure having an air gap and free of defects to surfaces of the metal feature is formed.
摘要:
A method for forming crenulated conductors and a device having crenulated conductors includes forming a hardmask layer on a dielectric layer, and patterning the hardmask layer. Trenches are etched in the dielectric layer using the hardmask layer such that the trenches have shallower portions and deeper portions alternating along a length of the trench. A conductor is deposited in the trenches such that crenulated conductive lines are formed having different depths periodically disposed along the length of the conductive line.
摘要:
A hard mask is formed on an interconnect structure comprising a low-k material layer and a metal feature embedded therein. A block polymer is applied to the hard mask layer, self-assembled, and patterned to form a polymeric matrix of a polymeric block component and containing cylindrical holes. The hard mask and the low-k material layer therebelow are etched to form cavities. A conductive material is plated on exposed metallic surfaces including portions of top surfaces of the metal feature to form metal pads. Metal silicide pads are formed by exposure of the metal pads to a silicon containing gas. An etch is performed to enlarge and merge the cavities in the low-k material layer. The metal feature is protected from the etch by the metal silicide pads. An interconnect structure having an air gap and free of defects to surfaces of the metal feature is formed.