摘要:
In one aspect, a FET device is provided. The FET device includes a substrate; a semiconductor material on the substrate; at least one gate on the substrate surrounding a portion of the semiconductor material that serves as a channel region of the device, wherein portions of the semiconductor material extending out from the gate serve as source and drain regions of the device, and wherein the source and drain regions of the device are displaced from the substrate; a planarizing dielectric on the device covering the gate and the semiconductor material; and contacts which extend through the planarizing dielectric and surround the source and drain regions of the device.
摘要:
In one aspect, a FET device is provided. The FET device includes a substrate; a semiconductor material on the substrate; at least one gate on the substrate surrounding a portion of the semiconductor material that serves as a channel region of the device, wherein portions of the semiconductor material extending out from the gate serve as source and drain regions of the device, and wherein the source and drain regions of the device are displaced from the substrate; a planarizing dielectric on the device covering the gate and the semiconductor material; and contacts which extend through the planarizing dielectric and surround the source and drain regions of the device.
摘要:
In one aspect, a method of forming contacts to source and drain regions in a FET device includes the following steps. A patternable dielectric is deposited onto the device so as to surround each of the source and drain regions. The patternable dielectric is exposed to cross-link portions of the patternable dielectric that surround the source and drain regions. Uncross-linked portions of the patternable dielectric are selectively removed relative to the cross-linked portions of the patternable dielectric, wherein the cross-linked portions of the patternable dielectric form dummy contacts that surround the source and drain regions. A planarizing dielectric is deposited onto the device around the dummy contacts. The dummy contacts are selectively removed to form vias in the planarizing dielectric which are then filled with a metal(s) so as to form replacement contacts that surround the source and drain regions.
摘要:
In one aspect, a method of forming contacts to source and drain regions in a FET device includes the following steps. A patternable dielectric is deposited onto the device so as to surround each of the source and drain regions. The patternable dielectric is exposed to cross-link portions of the patternable dielectric that surround the source and drain regions. Uncross-linked portions of the patternable dielectric are selectively removed relative to the cross-linked portions of the patternable dielectric, wherein the cross-linked portions of the patternable dielectric form dummy contacts that surround the source and drain regions. A planarizing dielectric is deposited onto the device around the dummy contacts. The dummy contacts are selectively removed to form vias in the planarizing dielectric which are then filled with a metal(s) so as to form replacement contacts that surround the source and drain regions.
摘要:
A memory cell, an array of memory cells, and a method for fabricating a memory cell with multigate transistors such as fully depleted finFET or nano-wire transistors in embedded DRAM. The memory cell includes a trench capacitor, a non-planar transistor, and a self-aligned silicide interconnect electrically coupling the trench capacitor to the non-planar transistor.
摘要:
A FinFET device with an independent control gate, including: a silicon-on-insulator substrate; a non-planar multi-gate transistor disposed on the silicon-on-insulator substrate, the transistor comprising a conducting channel wrapped around a thin silicon fin; a source/drain extension region; an independently addressable control gate that is self-aligned to the fin and does not extend beyond the source/drain extension region, the control gate comprising: a thin layer of silicon nitride; and a plurality of spacers.
摘要:
A stack of a hard mask layer, a soft mask layer, and a photoresist is formed on a substrate. The photoresist is patterned to include at least one opening. The pattern is transferred into the soft mask layer by an anisotropic etch, which forms a carbon-rich polymer that includes more carbon than fluorine. The carbon-rich polymer can be formed by employing a fluorohydrocarbon-containing plasma generated with fluorohydrocarbon molecules including more hydrogen than fluorine. The carbon-rich polymer coats the sidewalls of the soft mask layer, and prevents widening of the pattern transferred into the soft mask. The photoresist is subsequently removed, and the pattern in the soft mask layer is transferred into the hard mask layer. Sidewalls of the hard mask layer are coated with the carbon-rich polymer to prevent widening of the pattern transferred into the hard mask.
摘要:
Embodiments of the present invention provide a method of preventing electrical shorting of adjacent semiconductor devices. The method includes forming a plurality of fins of a plurality of field-effect-transistors on a substrate; forming at least one barrier structure between a first and a second fin of the plurality of fins; and growing an epitaxial film from the plurality of fins, the epitaxial film extending horizontally from sidewalls of at least the first and second fins and reaching the barrier structure situating between the first and second fins.
摘要:
A disposable material layer is first deposited on a graphene layer or a carbon nanotube (CNT). The disposable material layer includes a material that is less inert than graphene or CNT so that a contiguous dielectric material layer can be deposited at a target dielectric thickness without pinholes therein. A gate stack is formed by patterning the contiguous dielectric material layer and a gate conductor layer deposited thereupon. The disposable material layer shields and protects the graphene layer or the CNT during formation of the gate stack. The disposable material layer is then removed by a selective etch, releasing a free-standing gate structure. The free-standing gate structure is collapsed onto the graphene layer or the CNT below at the end of the selective etch so that the bottom surface of the contiguous dielectric material layer contacts an upper surface of the graphene layer or the CNT.
摘要:
A method of fabricating a FET device is provided which includes the following steps. Nanowires/pads are formed in a SOI layer over a BOX layer, wherein the nanowires are suspended over the BOX. A HSQ layer is deposited that surrounds the nanowires. A portion(s) of the HSQ layer that surround the nanowires are cross-linked, wherein the cross-linking causes the portion(s) of the HSQ layer to shrink thereby inducing strain in the nanowires. One or more gates are formed that retain the strain induced in the nanowires. A FET device is also provided wherein each of the nanowires has a first region(s) that is deformed such that a lattice constant in the first region(s) is less than a relaxed lattice constant of the nanowires and a second region(s) that is deformed such that a lattice constant in the second region(s) is greater than the relaxed lattice constant of the nanowires.