Abstract:
In various embodiments, eroded sputtering targets are partially refurbished by spray-depositing particles of target material to at least partially fill certain regions (e.g., regions of deepest erosion) without spray-deposition within other eroded regions (e.g., regions of less erosion). The partially refurbished sputtering targets may be sputtered after the partial refurbishment without substantive changes in sputtering properties (e.g., sputtering rate) and/or properties of the sputtered films.
Abstract:
In various embodiments, a joined sputtering target is formed by filling at least a portion of a gap between two discrete sputtering-target tiles with a gap-fill material, spray-depositing a spray material to form a partial joint, removing at least a portion of the gap-fill material, and, thereafter, spray-depositing the spray material to join the tiles.
Abstract:
In various embodiments, a sputtering target initially formed by ingot metallurgy or powder metallurgy and rejuvenated by, e.g., cold spray, is utilized in sputtering processes to produce metallic thin films.
Abstract:
In various embodiments, a sputtering target initially formed by ingot metallurgy or powder metallurgy and rejuvenated by, e.g., cold spray, is utilized in sputtering processes to produce metallic thin films.
Abstract:
In various embodiments, a sputtering target initially formed by ingot metallurgy or powder metallurgy and comprising a sputtering-target material is provided, the sputtering-target material (i) comprising a metal, (ii) defining a recessed furrow therein, and (iii) having a first grain size and a first crystalline microstructure. A powder is spray-deposited within the furrow to form a layer therein, the layer (i) comprising the metal, (ii) having a second grain size finer than the first grain size, and (iii) having a second crystalline microstructure more random than the first crystalline microstructure. Spray-depositing the powder within the furrow forms a distinct boundary line between the layer and the sputtering-target material.
Abstract:
A joined sputtering target comprising a sputtering material is formed by disposing two discrete sputtering-target tiles comprising the sputtering material proximate each other, thereby forming an interface between the tiles, the interface comprising at least one of an interlocking joint therein or a recess in a top surface thereof, and spray-depositing a spray material over at least a portion of the interface, thereby joining the tiles to form the joined sputtering target.
Abstract:
In various embodiments, a sputtering target initially formed by ingot metallurgy or powder metallurgy and comprising a sputtering-target material is provided, the sputtering-target material (i) comprising a metal, (ii) defining a recessed furrow therein, and (iii) having a first grain size and a first crystalline microstructure. A powder is spray-deposited within the furrow to form a layer therein, the layer (i) comprising the metal, (ii) having a second grain size finer than the first grain size, and (iii) having a second crystalline microstructure more random than the first crystalline microstructure. Spray-depositing the powder within the furrow forms a distinct boundary line between the layer and the sputtering-target material.